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FOREWORD 

The i n v e s t i g a t i o n  described i n  t h i s r e p o r t  w a s  performed by staff members of 

Lockheed Missiles and Space Company i n  cooperation with the George C.  Marshall 

Space F l i g h t  Center of the  National Aeronautics and Space Administration under 

Contract IUS 8-11079. Contract technical  representat ive was H. Coldwater. 

The work was conducted i n  A n a l y t i c a l  and Experimental Mechanics, Aerospace 

Sciences Laboratory, under the  supervision of J. H. Klumpp. The p r o j e c t  w a s  

under the  technica l  d i rec t ion  of E. Y. W .  Tsui with assoc ia tes  F. A .  Brogan, 

J. M. Massard, P. Stern,  and C.  E .  Stuhlman. 
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A .  Tensorial  Notation 
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w i l l  take the range 1, 2, 3, and Greek ind ices  

assume the range 1, 2) 
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C h r i s t o f f e l  symbols of the f i r s t  and second 
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W w Covariant sur face  vec tor  of r o t a t i o n  of 
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. 
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SUMMARY 

The study described i n  t h i s  repor t  i s  concerned with the d iscont inui ty  stress 

f i e l d s  t h a t  a r i s e  in t h i n  e l a s t i c  mul t i ce l lu l a r  s h e l l  s t ruc tu res  subjected t o  

i n e r t i a l ,  pressure,  and thermal loading condi t ions i n  combination with res idua l  

s t r e s s e s  r e s u l t i n g  from fab r i ca t ion  and assembly. 

methods were not  believed t o  be su i t ab le  f o r  solving such problems, numerical 

t e c hni que s we r e  i nve s ti ga t  e d . 

Since ana ly t i c  and va r i a t iona l  

The method of ana lys i s  decided upon f o r  the so lu t ion  of t he  complete s h e l l  

s t ruc tu re  i s  s imi la r  t o  the  "s lope-deflect ion" procedure used i n  the  analysis  

I of indeterminate space s t ruc tu res ,  i n  t h a t  the s t ruc tu re  i s  f i r s t  analyzed i n  

terms of the  behavior of the simple elements, cone, sphere, cy l inder ,  and p l a t e ,  

as represented by s t i f f n e s s  matrices which r e l a t e  t he  boundary forces  on the 
, 

element t o  boundary displacements. From t h i s  information and necessary con- 

d i t i ons  of equilibrium and displacement compat ib i l i ty  between elements, a s e t  

of equations can be formed and solved t o  y i e l d  so lu t ions  f o r  t h e  a c t u a l  element 

displacement boundary values corresponding t o  t h e  continuous s t ruc tu re .  Once 

the displacement boundary values f o r  the  elements a r e  known, the  s t r e s s e s  

throughout the  various elements can be determined from the s t i f f n e s s  funct ions.  

8 

I The major d i f f i c u l t y  i n  t h i s  method i s  the  determination of the s t i f f n e s s  matrices 

f o r  the ind iv idua l  s h e l l  elements. I n  the  procedure described, t h i s  i s  accomplished 

through the  f i n i t e  difference reduction of the  s h e l l  equations.  ~ The success Of 

X 
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the  method i s  dependent on the a b i l i t y  t o  solve l a r g e  s e t s  of a lgebraic  equa- 

t i o n s  accura te ly  and i n  reasonable computer time. 

complishing such so lu t ions  was developed and i s  described. 

A d i r e c t  method f o r  ac- 

T h i s  repor t  includes a review of per t inent  l i t e r a t u r e ;  the  der ivat ion of the 

general  s h e l l  equations and t h e i r  spec ia l iza t ion  t o  the  cone, sphere, cyl inder ,  

and p l a t e ;  a b r i e f  discussion of f i n i t e  difference expressions; a descr ip t ion  

of the method of solut ion,  and conclusions and recommendations. 

Information presented i n  appendices includes,  a discussion of the geometry of 

a spec i f i c  mul t i ce l lu l a r  s h e l l  s t ruc ture ,  a discussion of the equations governing 

an iso t ropic  p l a t e s  and cyl inders ,  a general  discussion of r e s idua l  s t r e s s e s  i n  

welded s t ruc tu res ,  and a d e t a i l e d  descr ipt ion of the  d i r e c t  method developed 

f o r  solving la rge  matrices of f in i te -d i f fe rence  equations.  

xi 
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1. INTRODUCTION 

1.1 Background 

I C  

The r a t i o n a l  design of l a rge  launch and space vehic les  containing m u l t i c e l l u l a r  

propel lan t  containers  requires  a c a p a b i l i t y  f o r  determining the  d iscont inui ty  

stress f i e l d s  t h a t  arise i n  s t ruc tures  composed of  a combination of s h e l l  elements 

subjected t o  i n e r t i a l ,  pressure,  and thermal loading conditions together  with 

r e s i d u a l  stresses r e s u l t i n g  from f a b r i c a t i o n  and asseIibly. She l l  s t ruc tu res  

composed of dissimilar elements with some non-geodesic junctures general ly  

cannot be analyzed with closed-form techniques. 

a l s o  appear t o  be impract ical  for solving such problems. 

so lu t ion  seems t o  be t h e  only prac t icable  recourse. 

Variat ional  o r  energy methods 

Therefore, numerical 

The purpose of this repor t  i s  t o  present  the equations appl icable  t o  the ana lys i s  

of m u l t i c e l l u l a r  s h e l l  s t ruc tures ,  t o  describe a prac t icable  numerical procedure 

for obtaining the  so lu t ion  of such equations by d i g i t a l  computer, and t o  discuss 

some p r a c t i c a l  aspects  of the  ana lys i s  of m u l t i c e l l u l a r  s t ruc tu res  including 

the  e f f e c t s  of r e s i d u a l  stresses r e s u l t i n g  from f a b r i c a t i o n  techniques. 

1 .2  Scope of the  Inves t iga t ion  

The scope of the inves t iga t ion  can be summarized i n  terms of the contents of 

the  ind iv idua l  chapters  which form t h i s  repor t .  

The f i rs t  phase of the  inves t iga t ion  includes a survey of p e r t i n e n t  l i t e r a t u r e .  

The r e s u l t s  of the survey a re  presented i n  Chapter 2 as (1) s tudies  i n  general 

s h e l l  theory, (2)  ana lys i s  of spec i f ic  s h e l l  types, and ( 3 )  analys is  of multiply 
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connected s h e l l  s t ruc tures .  This survey revealed no ava i lab le  procedure 

that could be appl ied d i r e c t l y  t o  solve the type of problem under considerat ion.  

A de t a i l ed  presentat ion of the  in f in i t e s ima l  theory of t h i n  e l a s t i c  s h e l l s  i s  

contained i n  t h e  t h i r d  chapter .  

of the  theory.  The object ive of t h i s  review was t o  obta in  the  simplest  possible  

system of equations f o r  development of the ana lys i s .  

because of the spec ia l  geometry and loading of the s t ruc tu re ,  the  major 

di f fe rences  of various vers ions of Love's f i r s t  approximation disappear.  

This information includes a c r i t i c a l  review 

It i s  observed t h a t ,  

She l l  equations,  based on Love's f i r s t  approximation with addi t iona l  assump- 

t i ons ,  a r e  der ived using tensor  ana lys i s .  

i n t o  the  conventional unabridged form, using an  orthogonal coordinate system 

with coordinate curves along l i n e s  of p r inc ipa l  curvature .  This s e t  of equa- 

t i o n s  furn ishes  the b a s i s  o f  the method of ana lys i s  described i n  t h i s  repor t .  

These equations a re  then t r ans l a t ed  

I n  the transformation of  the  equi l ibr ium equations,  the s i x  coupled equations 

a r e  condensed i n t o  three equations by the  method of e l iminat ion.  These three  

equations a re  then wr i t t en  i n  terms of displacement components, a l lowing f o r  

var iab le  thickness  and modulus of e l a s t i c i t y ,  and become the lengthy equations 

presented i n  the  t h i r d  chapter .  

I n  t h i s  chapter ,  the s h e l l  equations expressed i n  terms of displacement COm- 

ponents are presented not only i n  general  form bu t  a l s o  with Coeff ic ients  

spec ia l ized  f o r  spheres, cones, cy l inders ,  and p l a t e s .  

A t h e o r e t i c a l  treatment of t he  boundary condi t ions necessary f o r  unique solu- 

t i o n  of the governing d i f f e r e n t i a l  equations of l i n e a r  s h e l l  theory i s  a l s o  

1- 2 
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presented i n  this chapter.  It i s  shown that four  boundary condi t ions ins tead  

of f i v e  are required when the  Urchhoff-Love approximations a r e  used. 

cases  of f i x e d  and free edge conditions are given. 

The spec ia l  

In Chapter 4 membrane theory i s  discussed. This i s  an approximation of t h e  

no=n--l +a..#.-.”.. ,E +I..-.. el--+<- - L ~ l l , .  4, -.a..<nL - 1 1  mr.ma.*+” 0-P nonrrmor7 
6LuL.Ia-L u u ~ v ~ j  u A  u i A L u  L L a u u A . \ -  D u L A A a  w A u c . i i  u w - b u v u  ~vuuIyLv t~ b e  

negl ig ib le .  

s o l u t i o n  i s  out l ined.  It i s  believed tha t  i n  c e r t a i n  s i t ua t ions  the  so lu t ion  

of a set  of th ree  d i f f e r e n t i a l  equations i n  terms of t h e  displacement components 

u , v , and w may be more desirable .  These equations can be obtained d i r e c t l y  

from the general  governing equations by s e t t i n g  the  higher order terms involving 

tne  t’hickness equal t o  zero. 

negl ig ib le  bending s t i f f n e s s .  

f o r  membrane s h e l l s  are obtained and  spec ia l ized  f o r  tapered cones and f o r  uni- 

form thickness  cones, spheres, and cylinders.  

The equations f o r  membrane s h e l l s  are presented and a method of 

T’nis implies a f i n i t e  extensional s t i f f n e s s  hit 

With this approximation the  governing equations 

An e s s e n t i a l  s t ep  i n  the so lu t ion  of the  m u l t i c e l l u l a r  she l l  problem described 

i n  t h i s  repor t  i s  the f i n i t e  difference reduction of the shel l  equations t o  

a lgebra ic  form. A b r i e f  discussion of f i n i t e  difference expressions i s  pre- 

sen ted  i n  Chapter 5 including the  der ivat ion from a Taylor s e r i e s  expansion of 

a func t ion  of two v a r i a b l e s  o r  f r o m t h e  equivalent polynomial expression. 

t r a l  d i f fe rence  expressions f o r  a l l  der iva t ives  occurring i n  the s h e l l  equations 

a r e  given e x p l i c i t l y  i n  terms of a “rectangular”  a r r a y  of mesh poin ts .  

procedure for generat ing similar expressions i n  terms of mesh poin ts  having arbi- 

t r a r y  spacing i s  out l ined  i n  matrix form. 

Cen- 

The 

1- 3 



Chapter 6 contains  a discussion of the  general  method recommended f o r  t h e  

a n a l y s i s  of m u l t i c e l l u l a r  s h e l l  s t r u c t u r e s .  

of ( a )  general  considerations,  ( b )  stress and deformation of s h e l l  segments 

under intermediate (non-edge) loads,  ( c )  stress and deformation of s h e l l  seg- 

ments due t o  edge loads, (d )  equilibrium condi t ions and compatibi l i ty  require-  

ments a t  the  juncture of s h e l l  segments, and ( e )  the  general  method of ana lys i s .  

This chapter includes discussions 

Conclusions of t he  inves t iga t ion  and recommendations f o r  f u r t h e r  work are 

presented i n  Chapter 7. 

Four appendices a re  included i n  t h i s  r epor t .  

geometry of t he  s p e c i f i c  bulkhead s t r u c t u r e  descr ibed i n  Procurement Request 

TP3-85481. This includes the  necessary dimensions, coordinate systems, and 

i n t e r s e c t i o n s  of the component s h e l l s  which comprise the  bulkhead. General 

expressions f o r  dimensions are presented. The equations f o r  a sphere, cone, 

cy l inder ,  and p l a t e  a r e  given f o r  a system of rec tangular  coordinates.  Then 

a system of orthogonal c u r v i l i n e a r  coordinates  i s  presented f o r  each of the  

s h e l l  elements. From t h i s  information the  f i r s t  fundamental form and base 

vec to r s  of t he  surfaces a r e  given. By use of t h e  second fundamental form t h e  

p r i n c i p a l  radi i  of curvature are obtained. 

various s h e l l  components are computed. 

The f i rs t  def ines  i n  de t a i l  the  

The i n t e r s e c t i o n  curves of t h e  

The de r iva t ion  of equations governing the  behavior of anisotropic  p l a t e s  and 

cy l inde r s  i s  presented i n  Appendix 11. 

s t i f f e n e d  p l a t e s  and cy l inde r s  i n  t h e  sense t h a t  if t h e  s t i f f e n e r s  a r e  c l o s e l y  

spaced the  s t ruc tu re  can be approximated as an a n i s o t r o p i c  p l a t e  o r  cy l inde r .  

Const i tut ive equations have been derived f o r  p l a t e s  and cy l inde r s  when the  

This information i s  appl icable  t o  
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s t i f f e n e r s  are orthogonal and o f  equal s ize  and spacing. Two spec ia l  cases  

a r e  considered: (1) s t i f f e n e r s  a r e  or ien ted  i n  the  coordinate d i rec t ions ,  and 

(2 )  the  s t i f f e n e r s  are or ien ted  45 degrees from the  coordinate d i r ec t ions .  

4 

The 

+ corresponding c o n s t i t u t i v e  equations and the  governing d i f f e r e n t i a l  equations 

expressed i n  terms of t h e  displacement components u , v , and w are pre- 

sented f o r  these  cases.  

The general  aspects  of residual s t r e s ses  i n  welded s t ruc tu res  a r e  presented 

i n  Appendix 111. This includes (a )  a general  statement of t he  problem, (b)  

methods of evaluat ing r e s i d u a l  s t r e s ses ,  ( e )  res idua l  s t r e s s  or s t r a i n  pa t t e rns ,  

and ( d )  discussion and recommendations f o r  f u r t h e r  work. 

study of res idua l  s t r e s ses ,  it i s  conceivable t'mt tne induced r e s i d u a l  s t r e s s e s  

i n  the  non-stress  re l ieved  welded vesse ls  under consideration may be s ign i f i can t .  

Further ,  it i s  almost impossible t o  p r e d i c t  r e s i d u a l  s t r e s s  magnitudes and distri- 

butions ana ly t i ca l ly .  Consequently, it i s  recommended t h a t  c e r t a i n  experiments 

regarding r e s i d u a l  s t r e s s  magnitude and d i s t r i b u t i o n  should be performed so 

t h a t  an accurate  determination of welded j o i n t  e f f ic iency  and a t tenuat ion  length 

can be made and incorporated i n t o  the t h e o r e t i c a l  ana lys i s .  

A s  a r e s u l t  of the  

The success of the method described i n  t h i s  repor t  f o r  the numerical so lu t ion  

of the s h e l l  equations depends on a procedure f o r  solving l a rge  sets of f i n i t e  

d i f fe rence  equations accurately and i n  reasonable computer t i m e .  

method f o r  accomplishing such solut ions i s  described i n  Appendix I V .  

A d i r e c t  

1- 5 
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. 
2 .  LITERATURE SURVEY 

A l i t e r a t u r e  search has been undertaken t o  assess the  methods of a n a l y s i s  Of 

mult iply connected p l a t e  and s h e l l  s t r u c t u r e s .  

focused around the  juncture  of conica l ,  sphe r i ca l ,  c y l i n d r i c a l  s h e l l  Segments 

and f l a t  p l a t e s .  

I n  p a r t i c u l a r ,  c Oncern i s  

Because the  s t ruc tu re  under considerat  ion i s  unusual, the  l i t e r a t u r e  was evalu- 

a t e d  by work according t o  the following c l a s s i f i c a t i o n s  : 

1. General S h e l l  Theory 

2. Spec i f i c  S h e l l  Geometries 

3.  Multiply Connected S h e l l  S t ruc tu res  

The bibliography i n  ChapteT 8 i s  a l s o  divided i n t o  these th ree  sub jec t  

headings. 

2 . 1  General S h e l l  Theory 

No attempt w i l l  be made t o  t r a c e  the  evolut ion of s h e l l  theory up t o  the  present  

s ince  t h i s  can be found i n  ( A . 8 ) ,  ( A . 1 4 ) ,  ( A . 1 5 )  and c e r t a i n  references i n  the  

bibliography of s h e l l  and s h e l l - l i k e  s t r u c t u r e s  by W .  A .  Nash ( A . 1 2 ) .  

more, a t t e n t i o n  w i l l  be d i r ec t ed  t o  t h e  theory of small de f l ec t ions  of t h i n  

e l a s t i c  i s o t r o p i c  s h e l l s .  By small deformations we assume that t h e  equi l ibr ium 

conditions f o r  deformed elements a r e  the same as if they  were no t  deformed ( A . 1 4 ) .  

The equilibrium equations i n  terms of s t r e s s  r e s u l t a n t s  i n  t h i s  theory p resen t  

no d i f f i c u l t y  and t h e i r  general  expressions have been der ived by var ious i n v e s t i -  

gators  ( A . l ) ,  ( A . 2 ) ,  ( A . 3 ) ,  ( A . 4 ) ,  ( A . 6 ) ,  ( A . l k ) ,  ( A . 1 3 ) ,  e t c .  S imi l a r ly ,  expres- 

s ions  f o r  strain-displacement r e l a t i o n s  p re sen t  no d i f f i c u l t y .  

* 

Further- 

Y 
Numbers wi th in  parentheses r e f e r  t o  l i t e r a t u r e  l i s t e d  i n  the  Bibliography. 
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The e s s e n t i a l  problem i n  the  theory has been i n  the  formulation of appropriate  

c o n s t i t u t i v e  equations o r  s t r e s s - s t r a i n  r e l a t ions .  

t r o p i c  s h e l l s ,  a simple system of s t r e s s - s t r a i n  equations can be f o m l a t e d .  

Such a system i s  known as "Love's F i r s t  Approximation." 

Love assumptions (A.4)a (A.6)a d i f f e ren t  vers ions of Love's f irst  approximation 

For s u f f i c i e n t l y  t h i n  i so-  

Based on the Kirchhoff- 

have been derived ( A . l ) ,  (A.3)a (A.4)a (A .6 ) ,  (A.10), (A .13) ,  ( A . 1 4 ) a  ( A . 1 5 ) a  

(~.16), e t c .  It can be e a s i l y  observed, unfortunately,  that considerable dif- 

ferences occur w i t h  var ious workers, p a r t i c u l a r l y  as character ized by t h e i r  

expressions f o r  t h e  changes of curvatures.  Some of these expressions a l s o  

v i o l a t e  c e r t a i n  invariance requirements , such as the equilibrium condition 

f o r  moments about the normal di rec t ion  of a s h e l l  element, f o r  example. It 

should be pointed out, however, that f o r  p r a c t i c a l  appl ica t ions  discrepancies 

i n  d i f f e r e n t  forms of the  cons t i tu t ive  equations mentioned above are immaterial 

as long as the r o t a t i o n  i n  the  middle-surface about t h e  normal i s  small (A.4 ) .  

2.2 Spec i f ic  She l l  Geometries 

A review now w i l l  be made of the appl ica t ion  of s h e l l  theory t o  the s t r e s s  

a n a l y s i s  of spec i f i c  s h e l l  geometries. In the  formulation of the governing 

d i f f e r e n t i a l  equations f o r  she l l s ,  a choice i s  possible  as t o  the dependent 

v a r i a b l e s  t o b e  employed. These var iab les  may be expressed i n  terms o f :  

A. Displacements, 

B. S t r e s s  Resultants,  o r  

C .  A combination of Displacements and S t r e s s  

Resultants.  

Examples of t h i s  development a re  found i n  ( A . l ) a  ( A . 3 ) a  (A.13)a  ( A J ~ ) .  Since 

no general  ana ly t i c  method i s  avai lable  t o  solve the governing d i f f e r e n t i a l  

2- 2 



M- 0 3- 6 3-1 

equations,  va r ious  methods of approach have been used i n  the  so lu t ion  Of s h e l l s  

having s p e c i f i c  geometries, loadings and boundary condi t ions.  These methods 

include : 

a.  Exact 

b. Asymptotic 

c . Variat ional  

d. Numerical 

Due t o  the  f a c t  t h a t  t he  s t r u c t u r e  t o  be inves t iga t ed  i s  composed of c l a s s i c a l  

s h e l l  elements, namely, p l a t e s ,  cones, spheres and cy l inde r s ,  a t t e n t i o n  w i l l  

be r e s t r i c t e d  t o  these geometries which a r e  e s s e n t i a l l y  segments of s h e l l s  of 

revolut ion.  

An exact  s o l u t i o n  i n  hypergeometric series can be obtained f o r  sphe r i ca l  s h e l l  

segments axisymmetrically loaded a t  the  edges ( A . l ) ,  ( A . 1 3 ) .  

s e r i e s  f o r  c e r t a i n  range of radius-to-thickness r a t i o  have been r ecen t ly  tabu- 

l a t e d  (B .15) .  Asymptotic so lu t ions  can a l s o  be obtained f o r  t h i s  case and f o r  

s h e l l s  with an a r b i t r a r y  meridional curve (B.12). For s h e l l s  of revolut ion 

loaded asymmetrically and having two boundaries which can be described by a 

func t ion  of one of t he  coordinates ,  so lu t ions  can be obtained by the  use of 

Fourier  s e r i e s  t o  reduce the  p a r t i a l  d i f f e r e n t i a l  equat ions o f  equi l ibr ium t o  

ordinary d i f f e r e n t i a l  equations t h a t  can then be solved by asymptotic methods. 

Examples of t h i s  approach are found i n  ( A . l ) ,  (B.2), ( B . 5 ) ,  (B.lO). 

Values of these 

Variat ional  methods, s p e c i f i c a l l y ,  t he  method of R i t z  or Galerkin, have not  

been app l i ed  too  widely t o  two-dimensional problems. 

t he  t r ia l  functions of t h e  dependent va r i ab le  w i l l  be i n  the  form of a double 

This i s  probably because 

2- 3 
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series which usua l ly  converge very slowly. 

i n t e r s e c t i o n  of two c y l i n d r i c a l  shells ( c .6). 

T h i s  method has been appl ied  t o  the  

Numerical so lu t ions  have become p r a c t i c a l  because of t h e  a v a i l a b i l i t y  of high- 

speed d i g i t a l  computers. 

w r i t i n g  t h e  governing d i f f e r e n t i a l  equations i n  dil"l"ereace f x ~  t o  ;%,el2 9 

system of l i n e a r  a lgebra ic  equations.  

by s tandard methods fo r  t h e  dependent va r i ab le s .  

i n t e g r a t i o n  can a l s o  be used i n  the  so lu t ion  of t he  governing equations (B.20). 

The Fini te-Difference Method has been appl ied  by many inves t iga to r s  t o  s h e l l s  

having axisymmetric loads,  one such example i s  given i n  (~ .18 ) .  

asymmetric loads  can a l s o  be handled by the  Fourier  s e r i e s  method noted previ-  

ously combined wi th  the  numerical ana lys i s .  

boundaries and loads,  numerical ana lys i s  seems t o  be t h e  only p r a c t i c a l  recourse 

f o r  these  problems a t  the present .  It i s  i n t e r e s t i n g  t o  note t h a t  ava i l ab le  

l i t e r a t u r e  on t he  numerical solut ions f o r  a r b i t r a r y  s h e l l  segments i s  mostly 

confined t o  the  p l a t e  problems ( A . l ) a  (B.4) .  

One of t h e  numerical methods camonly  used involves 

T h i s  system of equat ions i s  then solved 

On t he  o the r  hand, numerical 

The case of 

For s h e l l s  having a r b i t r a r y  

2.3 Mult iply Connected She l l  S t ruc tures  

The development of s t r e s s  ana lys i s  methods for s p e c i f i c  p l a t e  and s h e l l  elements 

subjec ted  t o  given surface loads  and edge loads,  as descr ibed i n  sec t ion  2.2, i s  

of i q o r t a n c e  when these  elements are enployed a s  the  main s t ruc tu re  o r  when 

they  are combined i n t o  one i n t e g r a l  s t ruc tu re .  I n  the  l a t t e r  case,  one w i l l  

f i n d  s h e l l  elements having d i f f e ren t  geometrical p rope r t i e s .  Because of these 

geometr ical  d i scon t inu i t i e s  the  s t ruc ture  i s  analyzed by c u t t i n g  along these 
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d i s c o n t i n u i t i e s  and then applying edge loads t o  the c u t  elements i n  order that 

displacements a t  the s h e l l  i n t e r f aces  be compatible. 

Perhaps the simplest method f o r  " joining" s h e l l  elements together  i s  found 

when studying she l l s  of revolut ion subjected t o  axisymmetrical loads.  

t h i s  case use i s  made of influence c o e f f i c i e n t s  t o  insure c a n p a t i b i l i t y  of 

displacements and s t r e s ses  a t  the s h e l l  juncture .  This method i s  described 

in ( A . l ) ,  ( A . 1 4 ) ,  (A.17), ( C . 3 ) ,  ( C . 4 ) ,  ( C . 5 ) .  This method of ana lys i s  has 

the  advantage that i s  qu i t e  systematic once the influence c o e f f i c i e n t s  have 

been determined. 

I n  

For s h e l l s  of revolut ion subjected t o  asymmetric loading the problem of 

juncture s t r e s s e s  becomes more d i f f i c u l t .  The technique i s  t o  develop a 

so lu t ion  with a r b i t r a r y  edge loads which can be expressed i n  terms of Fourier  

s e r i e s .  Then the juncture s t r e s s e s  between s h e l l s  a r e  obtained through the  

compatibi l i ty  condition between loads and displacements which determines the 

c o e f f i c i e n t s  i n  the Fourier  s e r i e s .  

a n a l y s i s  ( A . 1 7 )  and i s  described f o r  s h e l l  problems i n  ( A . l ) ,  (A.2), ( A . 1 4 ) .  

I n  determining the  effec\t  of edge loads the general  problem i s  reduced t o  

solving ordinary d i f f e r e n t i a l  equations a f t e r  separa t ion  of va r i ab le s .  

separat ion of var iab les  i s  poss ib le ,  howevery only when the boundary edges 

a r e  a funct ion of one coordinate.  

This  method i s  used i n  p l a t e  bending 

This  

The so lu t ion  for cy l ind r i ca l  s h e l l s  has been ex tens ive ly  explored f o r  use i n  

roof s t ruc tu res  ( C . 2 ) .  Analytic s o l u t i o n  i s  obtained i n  terms of the radial  

displacement w of an 8 t h  order p a r t i a l  d i f f e r e n t i a l  equation. This so lu t ion  
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s a t i s f i e s  conditions f o r  a r b i t r a r y  boundaries along t he  generators and f o r  

simple supports on the o ther  edges. 

. 

I .  
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3. INFINITESIMAL THEORY OF THIN ELASTIC SHELLS 

3.1 , In t roduc t ion  

In orde r  t o  evaluate t h e  stresses and deformations of t h e  m u l t i c e l l u l a r  s h e l l  

s t r u c t u r e s  with reasonable accuracy, i t  i s  e s s e n t i a l  that a se t  of bas i c  s h e l l  

equations be establ ished.  

strain-displacement r e l a t i o n s ,  compa t ib i l i t y  and equilibrium equations and the  

c o n s t i t u t i v e  equations which re la te  the  moments and stress r e s u l t a n t s  i n  terms 

of changes of curvature and s t r a i n s .  

These equations include the  s t r e s s - s t r a i n  r e l a t i o n s ,  

A simple and y e t  consis tent  set  of s h e l l  equations i s  obtainable through the 

theory  known as Love's f i r s t  approximation. 

lowing well-known Kirchhoff-Love hypothesis:  

This theory i s  based on t h e  f o l -  

can be neglected.  (y1-3 ' b 3 )  a .  Normal s t r e s s  (03) and shear s t r a i n s  

b. The s h e l l  i s  th in ,  i . e . ,  << 1 where h i s  the  thickness  of 

s h e l l  and r i s  the  minimum p r i n c i p a l  r ad ius  of curvature .  

r 

c .  Normals t o  t he  undeformed middle-surface remain normals t o  the  

deformed middle- sur face .  

To achieve a s implif ied formulation, f a c i l i t a t i n g  the  expected numerical a n a l y s i s  

and conforming t o  the  invariance requirements, a d d i t i o n a l  assumptions are made : 

d. Deformations a r e  small. 

e .  Mater ia ls  are homogeneous, i s o t r o p i c  and behave e l a s t i c a l l y  within the  

stress f i e l d .  
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It i s  noted t h a t  the l a s t  assumption i s  j u s t i f i e d  i n  view of the symmetry i n  

geometry and loading of the s t ruc ture  under consideration. 

In w h a t  follows the fundamentals of t h e  d i f f e r e n t i a l  geometry of a surface 

expressions a r e  given i n  a compact form using tensor  notat ion.  Final ly ,  the  

general  equations of t h e  l i n e a r  theory of t h i n  e l a s t i c  s h e l l s  under the  above 

. 

mentioned assumptions a r e  expressed i n  terms of the physical  parameters. This 

set  of equations,  consequently, provides the basic  information f o r  development 

of the numerical ana lys i s .  

3.2 Fundamentals of D i f f e r e n t i a l  Geometry of a Surface 

A surface i n  a three-dimensional Euclidean space i s  defined as the  locus of a 

p o i n t  whose p o s i t i o n  vector  2 , r e l a t i v e  t o  some reference o r i g i n  0 , i s  a 

func t ion  of two a r b i t r a r y  curv i l inear  coordinates x ([Y = 1, 2)  . I n  terms 

of  right-handed orthogonal Cartesian coordinates x as shown i n  Fig.  3-1, 

one has 

- 

CY 

and 

where r i s  a s p a t i a l  p o s i t i o n  vector and a i s  the u n i t  normal vector .  
hl -3 

The square of an a r c  element i s  given by the sca l a r  product of , namely 
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! -  

I -  

where 

and a, i s  the  metr ic  tensor  and a, an are t h e  covariant  base vec to r s  

respec t ive ly .  Equation (3-2-3) i s  ca l l ed  the  f i r s t  fundamental form of t h e  

surface.  The corresponding conjugate t enso r  and cont ravar ian t  base vec to r s  

a r e  given by 

=v -- --F 

It i s  noted t h a t  equat ions (3-2-4) and (3-2-5) a l s o  s a t i s f y  t h e  following 

r e l a t i o n s  

where 6 i s  t h e  Kronecker delta. 

The vec to r  product of t he  covariant base vec tors  i s  expressed as 

S imi l a r  expressions for the  contravariant  base vec tors  may be obtained 

simply by r a i s i n g  t h e  ind ices  of  equation (3-2-7). 

3-4 



M-03- 63-1 

The second and t h i r d  fundamental forms of the surface are r e spec t ive ly  defined 

by the  following sca l a r  products 

d~ *&,=-b,,dx”dd’ 

do .da = b&dxadxp , 

( 3- 2- io) 

(3-2-11) 

U 9 

e 3  -3 

where 
I) 

3 balb, =O -3,. *d -9, (3-2-12) ba6fbps-g,*g,, b 

The mean curvature ( H )  and Gaussian curvature ( K )  of the  surface a r e  

i n v a r i a n t s  which a re  expressed i n  terms of t he  covariant  second fundamental 

surface t enso r s ,  as follows 

r are  the  p r i n c i p a l  rad i i  of curvature and 1 ’  2 where r 

(3-2-13) 

(3-2-14) 

(3-2- 5) 

4 

I f  B~ 
t i v e s  may be wr i t t en  as 

a r e  the s p a t i a l  covariant  base vec tors ,  then t h e i r  f i r s t  deriva- 

(3-2-16) 

where the C h r i s t o f f e l  symbols of t he  f i r s t  kind ( r ‘J n (r*’ ) i n  space are defined, i n  terms of t h e  covariant  d i f f e r e n t i a t i o n s  of 

and second kind 

L J  
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( 3-2- 19 1 

(3-2-20) 

(3-2-21) 

Equations (3-2-20) and (3-2-21) represent  respec t ive ly  the  covariant  

de r iva t ives  of t he  components u of the  vector  5 . h 
’ “A 

may be evaluated by equations bcve For a given surface,  the  tensors  

(3-2-3) and (3-2-10). 

equat ions of Codazzi and Gauss which can be wr i t t en  respec t ive ly  

It can be v e r i f i e d  that they a r e  r e l a t e d  by the  

(3-2-22) 

- 
where R s tands AQFJl f o r  the Riemann-Christoffel surface tensor  which can 

be w r i t t e n  
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(3-2-24) 

and the  covar ian t  der iva t ives  of t h e  sur face  tensors  as shown i n  equat ion 

(3-2-22) read  

3.3 Derivation of S h e l l  Equations 

A .  St re s s -S t r a in  Relat ions 

For a l i n e a r l y  e l a s t i c ,  homogeneous and i s o t r o p i c  body, t h e  s p a t i a l  

( con t r ava r i an t )  s t r e s s  tensor  can be r e l a t e d  t o  the  ( cova r i an t )  s t r a i n  

tensor  by the  following condi t ion 

where 

tensors  of the  undefomed and deformed body, and W i s  the  s t r a i n  energy 

pe r  u n i t  volume of t h e  undeformed s h e l l .  

g , 1 a r e  r e spec t ive ly  the  determinants of t h e  s p a t i a l  metr ic  

If t h e  deformations a r e  small, 

b and the  following expression may be assumed f o r  the  i n v a r i a n t  gS 

and equation (3-3-1) reads Tij = ~ J ~ t U L  , (3-3-3) 

where 

(3- 3-4) 

(3-3-5) 

and 

E 
== siz) 
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It i s  noted t h a t  the  tensor  equation (3-3-3) i s  based on the  general  s p a t i a l  

coordinates.  

translormation. 

It can be expressed i n  surface tensors  through a su i t ab le  

If assumption (a)  of sec t ion  3-1 i s  observed, it follows 

t h a t  

where 

B. S t ra in-  Displacement Relations 

The s t r a i n  t e n s o r  i s  a funct ion of the metric tensors  of the deformed 

and undefomed body, namely 

Observing that 

. 

where 2 i s  t h e  displacement vector, equation (3-3-8) becomes 

Using equations (3-2-19) through ( 3-2-ZL) inc lus ive ,  and not ic ing  

u = u@' the  des i red  strain-displacement r e l a t i o n s  a r e  obtained ( i n  

genera l  coordinates)  as follows 

cv 

(3-3-8)  

(3- 3-9) 
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The corresponding equation i n  covar ian t  surface de r iva t ives  i s  

and the  covar ian t  surface tensor  of t h e  r o t a t i o n  of t he  normal a t  the  

middle - surf  ace 

The above antisymmetric sur face  tensor  

the  middle-surface around the  normal. 

c$,,~ descr ibes  the  r o t a t i o n  i n  

C .  Equilibrium Equations 

Let  p 
sur face ,  and 2a , 
measured pe r  u n i t  l ength  of t h e  l i n e  x = cons tan t  

represent  the  load vec tor ,  measured pe r  u n i t  area of t h e  middle- 

a r e  the  respec t ive  s t r e s s  r e s u l t a n t s  and moments, 

= 0 along t h e  x3 Q 

boundary of an  element. These vec to r s  may be denoted by 

3- 9 

(3-3-13) 

The change of curvature tensor  i s  obtained from the covariant  d i f f e r e n t i a t i o n  

of equation (3-3-12), i . e . ,  

where 

( 3-3-15) 

( 3 - 3 4 6 )  

(3-3-17) 
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. 
I 

c 

( 3- 3-18 1 

( 3- 3-19 1 

the  q u a n t i t i e s  H and K a r e  defined by equations (2-3-14) and (2-3-15) 0 

r e spec t ive ly  . 

The condi t ion  of s t a t i c  equi l ibr ium of an element requi res  that (1) the  

vec tor  sum of a l l  forces and ( 2 )  t h e  moment of a l l  forces  about. an a r b i t r a r y  

p o i n t  vanish.  Consequently, 

9 

If equat ion (3-3-16) i s  s u b s t i t u t e d  i n t o  equation (3-3-21) and i f  t h e  f o l -  

lowing w e l l  known formulas of  Weigarten and Gauss 

(3-3-23) 

( 3- 3-24 1 

( 3- 3-25 ) 

a r e  employed, t h ree  equations a r e  found by s e t t i n g  the  coe f f i c i en t s  of the  

covE.riant base vec tors  equal t o  zero. Then i f  the surface covariant  deriva- 

3- 10 
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nafiba,+qal a + p3 =O 

t ives  are introduced] the following equi l ibr ium equations are obtained 

9 

) can be transformed i n t o  S imi la r ly ,  equation (3-3-2 

D. Const i tut ive Equations 

The general  expression of t h e  s t r a i n  energy pe r  u n i t  a r ea  of t he  unde- 

formed middle-surface can be w r i t t e n  (Ref. A . 4 )  as 

(3-3-26a,b) 

(3 -3 -26~  ) 

(3-3-26d1 e )  

(3-3-27) 

i n  which W i s  defined by  equation (3-3-2). W can be expanded i n t o  a 

t runca ted  Taylor s e r i e s  with respec t  to the  z -  coordinate ,  and t h e  s p a t i a l  

e l a s t i c  moduli, change of  curvature]  and s t r a i n  t enso r s  can be expressed i n  

terms of t h e i r  surface equiva len ts .  I n t e g r a t i n g  (3-3-27) so obtained]  through 

the  thickness ,  one a r r i v e s  a t  

3- 11 
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Since V i s  i n v a r i a n t  under a l l  transformations of coordinates,  one can 

r e l a t e  the  stress re su l t an t s  (n ) and moments (m ) t o  equation (3-3-28) 

i n  a 'way similar t o  that  f o r  the s t r e s ses  

cyf3 @ 

( T ~ ' )  i n  terms o f  W (see sub- 

sec t ion  A above) t o  obta in :  

Consequently, we have 

Since the  equations of Codazzi and Gauss may be used t o  obtain the compati- 

b i l i t y  equations f o r  s t r a i n  and change of curvature tensors ,  the  der iva t ion  

of the l a t t e r  equations w i l l  not be considered. 

3.4 Physical  I n t e r p r e t a t i o n  of Shei l  - Equations 

The formulas der ived in t he  previous sec t ion  f o r  general  middle-surface 

coord inLte  systems a r e  qui te  complicated when expanded. 

an engineer ing ana lys i s ,  these equations must be t r a n s l a t e d  i n t o  conventional 

no ta t ion .  For the  problem under consideration, a simpler s e t  ol' f o m l a s  can 

be developed i f  w e  adopt the orthogonal c u r v i l i n e a r  coordinate system formed 

by the  l i n e s  of curvature as coordinate curves. 

coordinzte  system w i l l  be establ ished.  

I n  order  t o  p e r f o m  

Equations f o r  t h i s  spec ia l  

3- ii 
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When coordinates  coincide with the  orthogonal l i n e s  of curnature ,  

x = CY and x = B , then equations (3-2-4) and (3-2-12) through (3-2-14) 

i .e . ,  

1 2 

inc lus ive  y i e ld  

The surface Chr i s to f f e l  symbols take the following form 

( 3-4- 2a-d) 
1 
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Appropriate s u b s t i t u t i o n  of the  above q u a n t i t i e s  i n t o  equations (3-2-22) and 

(3-2-23) gives the  s impl i f ied  form of the  equations of Codazzi and Gauss, as 

follows : 

The v a r i a t i o n  of s t r a i n s  a long  the  z d i r e c t i o n  can be r e l a t e d  t o  the 

sur face  s t r a i n  tensor  and change of curvature tensor  i n  general  c u r v i l i n e a r  

coordinates  as 

These s t r a i n  components, on the other hand, may be w r i t t e n  i n  the  se lec ted  

coordinate  system as 

Comparison of equations (3-4-8) and (3-4-9) gives the  following t r a n s l a t i o n  

l a w  

3-14 



M- O 3- 63-1 

(3-4-7a-f) 

I n  terms of physical components, the vectors n and m may a l so  be 

expressed as 

-a -r2 

-t 
-a n = %,a,, (%I +N&,(a,,i++ QJa, 9 ( 3 - 4 4 )  

and 

(3-4-9 1 .A m = M  -a QI a2(a r +M~%%' t o 9  . 

If equations (3-3-16, 17)  and (3-4-8, 9 )  a r e  compared, one obtains 

( 3-4-loa-c ) 

3-15 
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After  s u i t a b l e  s u b s t i t u t i o n  of equations (3-4-1,2) and (3-4-5) through (3-4-10) 

i n t o  equations (3-3-3) t o  (3-3-30) inc lus ive ,  one obtains  the  des i r ed  set of 

conventional s h e l l  equations: 

A.  S t r e s s -S t r a in  Relations 

( 3-4-lla-c ) 

where g\ , v  
curvature  and to r s ion .  

*are  the  middle-surface s t r a i n s ,  and %'s are the  changes of 

where 

B. Strain-Displacement Relat ions 

e p Z , + z % ,  1 

et= €* +z x, 

9 

9 

3- 16 
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i n  which the  ro t a t ions  0 of the  normal t o  the  middle-surface i n  the 

d i r ec t ion  CY and B a re  respec t ive ly  given by 

0 

3 
u u  q =-, I - A I  

r; A I  

0, r, A, 
= 2 - a t  u u  , 

C .  Equilibrium Equations (Fig.  3-2) 

9 

9 

(3-4-13a-f) 

(3-4-14a, b )  

3-17 



( 3-4-16a-i) 

where 
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E. Rotation i n  Middle-Surface about the  Normal 

(3-4-17) 

It should be pointed out t h a t  t h e  e f f e c t  of changes of temperature has 

been provided f o r ,  as  shown i n  equations (3-4-11) and (3-4-16). 

The s ign  conventions for s t r e s s e s  and deformations adopted f o r  the  present  

i nves t iga t ion  a r e  given i n  Fig.  3-2 and Fig .  3-3 r e spec t ive ly .  

If the  shears  Q1 and Q, are el iminated i n  equations (3-4-15) and the  

s t r e s s - r e s u l t a n t s  as well as moments a r e  s u b s t i t u t e d  by equations (3-4-16) 

which i n  t u r n  can be expressed by equations (3-4-12) and (3-4-13), one then 

obtains  th ree  governing d i f f e r e n t i a l  equations of equi l ibr ium (3-4-18).  

The c o e f f i c i e n t s  of these equations are shown i n  Table 3-4-1. It i s  noted 

t h a t  the  Codazzi and Gauss equations (3-4-3) and (3-4-4) have been used i n  

d i f f e r e n t i a t i o n s  during the  process of obtaining these governing equations.  

3- 19 
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FIG. 3-2 STRESS RESULTANTS,MOMENTS AND LOAOS 

FIG. 3-3 DISPLACEMENTS AND ROTATIONS 
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Table 3-4-1 Coefficients ai , bi , and c of General Shell 

i 
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Table 3-4-1 C o e f f i c i e z t s  a. i , L .  1 . nci "i of General Shell (Cont.) 
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Table 3-4-1 Coeff ic ients  a bi , and c of General She l l  (Cant.) 

i i 

C, =( 

C. =/ 
U (24 - 
Ar. 

3- 24 
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Table 3-4-1 Coefficients a , bi . and c of General Shell (Cont,.) 

i i 

C w= -(?) 
-zF) I 
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3.5 D i f f e r e n t i a l  Equations of Equilibrium f o r  Spec i f ic  Shells 

I --- A1theiigh --- the P-ressions f o r  the coef f ic ien ts  of t he  governing d i f f e r e n t i a l  

equations (3-4-18) as l i s t e d  i n  Table 3-4-1 and Table 3-4-2 are p e r f e c t l y  

general  f o r  a l l  c l a s s i c a l  s h e l l  elements,  i n  p r a c t i c e  i t  i s  more desirable  t o  

reduce these expressions t o  spec i f i c  cases so  tnat they can be r e a d i l y  appl ied 

i n  the  numerical ana lys i s .  Tnis i s  accomplished i f  the  Lam: parameters and 

tne p r i n c i p a l  radii of curvature of the spec i f ic  shel ls  such as tnose l i s t e d  

i o  Table 3-5-1 are i n t m d x e d .  

Table 3-5-1 PARAMETERS OF SPECIFIC SHELLS 

I 

I .  

Appropriate s u b s t i t u t i o n  of these parameters i n t o  the general  expressions f o r  

the c o e f f i c i e n t s  of governing d i f f e r e n t i a l  equations yields the  spec i f i c  

c o e f f i c i e n t s  f o r  the  spheres, cones, cyl inders  and p l a t e s  as snown i n  Table 3-5-2. 

Tnus far  we nave considered that the  modulus of e l a s t i c i t y  

r a t i o  ( u )  and the  tnickness of s h e l l  (n)  are var iab les .  I f  the mater ia l  

p r o p e r t i e s  a r e  constants  and tne var ia t ions  of s h e l l  tnickness are prescribed, 

(E) Poisson's 

3-26 
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Table 3-5-2 Coefficients a, , b. , and c2 of Specific Shells 

I 

4 
1 S P H E R E  

a, sin+(\ t k) 

lad 

14 

1 L 

CONE CYLINDER P L A T =  

Y smq R i 
L 

I t v  
2 
- 

0 

0 

0 

0 

0 

O I  0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 
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Table 3-5-2 Coefficients a, , b, , and c, of Specific Shel ls  (Cont.) 
I I I 

l o  I 
42-r)kR I o  I I 

c I I 
I 

__ 
-I 

R 

0 

I 
R 
- 
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Table 3-5-2 Coeff ic ien ts  ai , bi , and ci of Specif ic  Shel ls  (Cont . )  

SrufzFtP C O N I  CYLthJDE R PlAl 

C ,=: 0 0 0 

cz= 0 0 0 

C,= 0 0 0 

9 

. 
D J O  

2,,, 0 I O l o  
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Table 3-5-2 Coeff ic ients  a bi , and c of Spec i f ic  Shells (Cont.) 
i i 

1 1 1 
O P w t a s  I 

0 
Q'smr9 -2 

k I  
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some of the expressions l i s t e d  i n  Table 3-5-2 can be f 'urtner s impl i f ied  because 

der iva t ives  involving the  mater ia l  constants and s h e l l  thickness are e i t h e r  

i d e n t i c a l l y  equal t o  zero o r  can be d i f f e ren t i a t ed ,  and consequently one can 

express equations ( 3-4-18) e x p l i c i t l y .  Tne governing d i f f e r e n t i a l  equations 

of f i ve  spec i f ic  s h e l l  elements so obtained, namely: tapered cone, uniform cone, 

uniform sphere, uniform cyl inder  and uniform p l a t e  a r e  given by equations 

(3-5-1) through (3-5-5). 

along tne generators whereas "uniform" means tne  tnickness i s  constant.  

By "tapered" we mean the  thickness va r i e s  l i n e a r l y  

3- 31 
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Case 1 Tapered Cone: 

I .  
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Case 2 Uniform Cone: 

- I  

( 3 - S - 2 b )  



3- 34 



M- 0 3- 6 3- 1 

Case 4 Uniform Cylinder: 

Case 5 Uniform Plate: 

r; (3-5-4c) 
where  k m  - I2 R' 

(3- 5-5 c ) 
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3.6 Boundary Conditions 

A unique so lu t ion  of the  equilibrium equat ions (3-3-26), c o n s t i t u t i v e  equat ions 

(3-3-30), and the  strain-displacement equations (3-3-12); (3-3-14) f o r  s t r e s s e s  

and displacements of a s n e l l  i s  determined by the boundary conditions.  

boundary condi t ions are given ty a cel-tsir? m&er of r e l a t i o n s  between fo rces ,  

moments, displacements o r  f'unctions of tnese  q u a n t i t i e s  a t  the  edge of t he  

s h e l l .  

Tnese 

We Let t he  boundary of tne s n e l l  be a smooth curve c 

of ortnogonal c u r v i l i n e a r  coordinates (?l , 6) , i n  wnicn the curve c i s  

given by the  equat ion 6 = constant . Along the boundary curve 

and introduce a system 

a. Coordinates b. Deformations e .  Forces 

Fig. 3-4 Boundary Coordinates, Deformations and Forces 

the displacement and r o t a t i o n  components are shown i n  Fig. 3-4b and the  s t r e s s  

r e s u l t a n t s  and couples a r e  shown i n  Fig.  3-4c. 

Tnen, the force ,  moment, displacement and r o t a t i o n  vec tors  a t  the boundary a r e  
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9 

(3-6-1 a- d )  

The fo rce  and moment vectors  are a funct ion of f i v e  q u a n t i t i e s  N q J NC 
Q3 J 

. Thus the number of boundary conditions should be f i v e .  However, M5 ’ Mcri 
because of the Kirchhoff-Love hypotnesis, the  number of boundary conditions 

i s  a c t u a l l y  four. To f i n d  t h e  c o r r e c t  boundary condi t ions w e  consider t he  

work done by the boundary fo rces  and displacements 

- / [wN - -  +n-M] C I Y  ds . 
c 

Wb - ( 3 - 6 - 2  ) 

Expanding tne  scalar products i n  the  above equation by use of  equations 

(3-6-1)) w e  obtain 

The r o t a t i o n  w can be w r i t t e n  i n  terms of the displacement components b y  5 

where 
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A, -defined by dS=\dq 

With t h e  r e l a t i o n  (3-6-4), equation (3-6-3) becomes 

Tne las t  term i n  the  integrand of tnis equation can be in t eg ra t ed  by p a r t s  t o  

y i e ld  

If M W i s  single-valued, equation (3-6-5) becomes srl 

Tne proper  fou r  boundary condi t ions are given by equation (3-6-6). 

requi red  boundary fo rces  and moments a r e  

Tnus, t h e  

3- 38 
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conditions are 
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(3- 6- 8 a-d 1 

- w = w  

q = w, 
A t  a boundary the force ,  moment, displacement,and r o t a t i o n  vec tors  a r e  

Certain spec i f i c  boundary condi t ions a r e  

a )  Fixed edge 

A f ixed edge i s  defined by 

I n  terms of components t n i s  becomes 

u = U , = w  =w =o .I 7 3 

(3-6-9 a-4) 

(3 -  6-10 o,b) 

( 3  -6-11 a-d) 

can be w r i t t e n  i n  terms of displacement components, So t h a t  tne 9 However, 

3- 3Q e 



conditions f o r  a f ixed  edge are 

b) Free edge 

A t  a f r e e  edge we have 

In terms of s t r e s s  r e su l t an t s  and couples we nave 

In tne  case t n a t  two snells a r e  joined togetner  and tne r i g i d i t y  a t  the edge 

i s  of t he  same order  of magnitude, tne boundary conditions become cont inui ty  

requirements and a re  

N = N  
- 1  - 2  

(3-6-lSo-d) 

where 1 2 r e f e r s  t o  s n e l l  one and two. , 
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4. MEMBRANE THEORY OF SHELLS 

4 . 1  Introduct ion 

Membrane theory i s  a n  approximate method of a n a l y s i s  of t h i n  s h e l l s  based 

upon the  assumption t h a t  a l l  moments a r e  neg l ig ib l e .  This assumption i s  

j u s t i f i a b l e  e i t h e r  when the  s h e l l  has very small bending r e s i s t ance  o r  when 

t h e  changes of curvature and t o r s i o n  of the  middle surface 

a r e  very small. 

while t he  second case i s  found i n  s h e l l s  having f i n i t e  bending s t i f fness  b u t  

a momentless s t a t e  of s t r e s s .  

i n  these two s h e l l s  a r e  i d e n t i c a l .  She l l s  have an advantage over a p l a t e  i n  

t h a t  t ransverse loads a r e  sustained without appreciable bending provided i t s  

edges are s u i t a b l y  supported, the  loads do not  vary g rea t ly ,  and the  radius  

of curvature i s  smooth. It w i l l  be shown t h a t  with the  assumption of 

neglect ing moments t h e  t ransverse shear r e s u l t a n t s  are zero, and the  unknown 

s t r e s s  r e s u l t a n t s  a r e  reduced t o  

theory becomes a process of determining these f o u r  unknowns and t h e  displace-  

ment components (u a v # w )  i n  the  absence of moments. 

( x 1  ’ x2 J x 1 2 )  

The f i r s t  i s  found i n  f l e x i b l e  s h e l l s  such as a diaphragm 

The equations descr ibing the  membrane behavior 

N1 , N2 , N12 , N21 . Thus, t he  membrane 

4.2 S h e l l  Equations 

t 

The equations of  membrane theory can be obtained from t h e  equations of t he  

general  theory. 

it i s  seen t h a t  the t ransverse shear  s t r e s s  r e s u l t a n t s  

When the  moments a r e  se t  equal t o  zero i n  equations (3-4-15) 

(a, J Q2) must be 

zero.  Hence, t he  equilibrium equations f o r  membrane theory a r e  



. 

N1 N2 = 0 ,  
p3 

+ - -  r 
- 

1 2  r 

~~~ 
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= 0 .  N12 - N21 

These equations involve fou r  unknowns. From t h e  last  of these equat ions i t  

(4- 2-la- d) 

and N are equal.  This i n  21 i s  seen that t h e  shear stress re su l t an t s  
N12 

e f f e c t  reduces the problem t o  t h ree  unknowns with three equations.  Thus, t h e  

problem of determining the  s t r e s s  r e s u l t a n t s  i s  s t a t i c a l l y  determinate with 

respec t  t o  the equi l ibr ium of an i n f i n i t e l y  slnall element, however, no t  neces- 

s a r i l y  wi th  respec t  t o  the  e n t i r e  s h e l l .  

Since membrane theory i s  concerned with determining N1 ,, N2 , N12 , u , v , 

w , equations (3-4-16) and strain-displacement r e l a t i o n s  (3-4-12) resF c t i v e l y  

a r e  

- Eh (el + u i 2 )  + N T , 
2 1 - v  - 

and 

= hG7 - 
N12 - N12 Y 

(4-2- 2a-c ) 



- 
9 

- -  + -  A2, 1 u3 
l u  2 , 2  A1A2 u1 -I- < - 

s2 A2 

- Y =  y2) +5(2) 
A2 ,1 A2 *1 , 2  . 
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(4-2- 3a-c ) 

Equations (4-2-1),  (4-2-2) and (4-2-3) a r e  the  complete s e t  or' equations f o r  

membrane theory.  I n  many cases  it i s  convenient t o  solve the  equations i n  two 

s t e p s .  

wi th  a r b i t r a r y  funct ions of i n t eg ra t ion .  

mined by the boundary loading. Once N1 , 

be determined by equation (4-2-2).  

equation (4-2-3), the  displacements a r e  obtained by solving t h i s  s e t  of equa- 

t i o n s  i n  two pa r t s ,  i . e . ,  t he  displacements f o r  the  p a r t i c u l a r  s t r a i n s  and 

the displacements of  the  homogeneous s e t  of equations.  This  l a s t  s e t  y i e lds  

add i t iona l  funct ions of i n t eg ra t ion  t o  s a t i s f y  c e r t a i n  displacement boundary 

condi t ions.  

The f i r s t  s t e p  would be t o  solve equation (4-2-1) f o r  N1 , N2 , N12 

These a r b i t r a r y  func t ions  a r e  de te r -  

a r e  known the  s t r a i n s  can N2 ' N12 

When these  s t r a i n s  a r e  s u b s t i t u t e d  i n t o  

The method o f  analys is  as presented i s  i n  many prdblems convenient, however 

not  compulsory. A s ingle  system of equations i n  u , v , w can be obtained 

by expressing the s t r e s s  r e s u l t a n t s  i n  terms of displacements by use of equa- 

t i o n s  (4-2-2) and (4-2-3).  Then these  s t r e s s  r e s u l t a n t s  a r e  s u b s t i t u t e d  i n t o  

equation (4-2-1) t o  y i e ld  the des i red  s e t  of equat ions.  

t h a t  i d e n t i c a l  r e s u l t s  can a l s o  be obtained d i r e c t l y  from the  general  governing 

d i f f e r e n t i a l  equations (3-4-18) by s e t t i n g  

duction it i s  assumed t h a t  the  s h e l l  has f i n i t e  r i g i d i t y  i n  extension and in -  

p lane  shear  bu t  no thickness t o  r e s i s t  bending. I f  h2 i s  set t o  zero i n  

It should be noted 

h2 = 0 . With t h i s  type of re -  
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equations (3-4-18) then the  governing equations f o r  membrane s h e l l s  are given 

by equations (4-2-4a-c). The coe f f i c i en t s  of these  equations a r e  given f o r  a 

general  s h e l l  (Table 4-2-1) and then reduced t o  three  spec i f i c  cases (sphere, 

cone and cy l inder ) .  

spheres, and cyl inders  are presented Ly equations (4-2-5) , (4-2-6), (4-2-7), 

Equations f o r  a tapered cone and constant thickness cones, 

and (4-2-8) respect ively.  

ap, +a u +a,u,,?a4u, +au,+at 6 +au 7 2q +ap+i+a,u+ 
'I1 L I*R% % 5  

4-4 



Table 4-2-1 Coefficients a , bi , and c, 
i I. 

of Membrane Shel ls  

1 GENERAL FORM SPHERE 

1 A 
A. 

3 .I 

I+ v I 14.1, 1+3 
2 
- 

a: 

9:1 0 0 

O I o  0 0 9: 

0 0 9: 

O I o  0 0 

V l y  
0 

0,' 1 O I o  

4- 5 



M- 03- 63-1 

4, 

Table 4-2-1 Coefficients a; b, , and c, 

0 0 

L A 

of Membrane Shells (Cont.) 

B E N t R & C  FOQM SPUEU. 

It* 
0 2 

- 1 +v - 

14.1 

\-3 A* 
" I C  
-- 

1 
z3 

I '  

I %-I 
0 I o  0 

14 0 
O I o  0 

0 

O I o  0 I j !:I 0 
l -  ' 1  I !b, 

4-6 



M-03-63-1 

Table 4-2-1 Coeff ic ien ts  ai , bi , and ci 

of Membrane Shel ls  (Cont.)  

CONE 

0 

0 - -  
t Q' 

0 0 
. .  

0 

0 
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Case 1 Tapered Cone: 
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Case 3 Uniform Sphere: 

Case 4 Uniform Cylinder:  

4- 9 



4.3 Boundary Conditions 

. The complete set of governing d i f f e r e n t i a l  equations (4-2-4) of membrane 

theory  in terms of displacements is of the  f o u r t h  order  while t h e  equations 

of the  general  theory i s  of  t h e  e ighth  order .  

boundary condi t ions are required i n  t h e  general  theory; thus,  membrane theory 

must requi re  two boundary conditions along each edge of t h e  she l l  s ince  t h e  

order  of t he  equation i s  one half that of t he  general  theory.  Referr ing t o  

Fig.  3-4c it i s  seen t h a t  i f  a l l  moments and t ransverse  shear are zero the 

remaining stress r e s u l t a n t s  a r e  N and N . If the boundary condi t ions 

a r e  expressed in terms of s t r e s s e s  they  must be given by these  two q u a n t i t i e s .  

If t h e  boundary condi t ions a re  wr i t t en  i n  terms of displacements t h e  re -  

qu i red  Conditions must be appl ied t o  u5 and LL,, . Notice that i n  membrane 

theory  w and 

nerrbrane shel l  t h e  force ,  moment, displacement and r o t a t i o n  vec tors  a r e  

[see equation (3-6-9a-d)] 

It has been shown t h a t  fou r  

6 II 

can not be spec i f ied  a t  an edge. A t  a boundary of a (Url 

- 
M z O  
N 

(4-3-la-d) 

From these poss ib le  boundary condi t ions a membrane she l l  with r i g i d  edge 

r e s t r a i n t  i s  given by the  condition 

4- 10 
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If the  she l l  t o  be analyzed does not have boundary condi t ions compatible w i t h  

those given by equation (4-3-1) the  membrane s t a t e  w i l l  be d is turbed  around 
I 
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5 .  FINITE DIFlFERENCE EXPIiESSIONS 

5.1 Introduct ion 

For the  s o l u t i o n  of the s h e l l  equations presented i n  Chapter 3 f i n i t e  

r 

I .  

difference expressions are require6 f o r  cierivatives 02 t he  f o i i u w i a  iyyesj; 

Tne required expressions can be obtained from a t runcated Taylor series ex- 

pansion f o r  a funct ion of two var iables ,  or from an equivalent polynomial 

expansion. 

backward, o r  c e n t r a l  differences can be obtained through su i t ab le  s e l e c t i o n  of 

* 
A s  explained i n  many standard references , expressions for forward,  

p o i n t s  chosen f o r  tne expansion; andr tnrough the t runca t ion  of the se r i e s ,  

var ious accuracies  can be achieved. 

Consider tne p a t t e r n  of mesh poin ts  used t o  represent  the funct ion.  Since 

expressions f o r  twelve der iva t ives  are required here,  t ne  expansion must en- 

compass a m i n i m u m  of twelve poin ts  in addi t ion  t o  t i e  "origin" about wnich the 

expansion i s  made. Res t r ic t ing  a t t en t ion  t o  c e n t r a l  differences tne obvious 

p a t t e r n  is: 

1 * For example see "Relaxation Methods," F. S. S h a w ,  Dover Publ icat ions,  Inc. ,  
1953 
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I 

It can be snown that  tie hignest  degree of accuracy for a p a r t i c u l a r  number of 

po in t s  r e s u l t s  i f  the p a t t e r n  "mesh" i s  a t  least  "rectangular" i n  t ne  ortnogonal 

coordinate system used. F i n i t e  difference expressions involving a r b i t r a r y  

spacings can be derived, as ind ica ted  below, but accuracy su f fe r s .  However, 

f i n i t e  d i f fe rence  expressions involving a r b i t r a r y  spacings should a t  leas t  be 

considered because of t h e  necess i ty  f o r  t r e a t i n g  i r r e g u l a r  boundaries (boundaries 

whicn are not  l i n e s  o f  p r inc ipa l  curvature i n  the coordinate system used) .  

menb of such boundaries may be accomplished, i n  p r inc ip l e ,  by any of several  

metinods sucn as (1) subdivision of t he  mesh using a rectangular  pa t t e rn ,  ( 2 )  

use of a p a t t e r n  composed of a r b i t r a r y  spacings matching t h e  boundary, o r  ( 3 )  

gross approximation using the  regular  pa t t e rn .  I n  general ,  tne t h i r d  procedure, 

while t h e  simplest, i s  i n f e r i o r  i n  accuracy t o  e i t n e r  of tne f i r s t  two. Use 

of the f i r s t  method requires  e i t n e r  an increase  i n  tne  number of simultaneous 

equations t o  be solved or use of an i t e r a t i v e  technique. The second metnod 

does not  necessa r i ly  increase tne  number of simultaneous equations but  does 

require  t h e  use o f  mucn more complicated d i f fe rence  expressions of somewnat 

l e s s  accuracy than those f o r  t he  rectangular  ne t .  

Treat-  
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5.2 Taylor Se r i e s  Expansion f o r  a Function of Two Variables 

The Taylor s e r i e s  f o r  t i e  f'unction f(a# can be wr i t ten  as: 

wnere di represents  the d i f f e r e n t i a l  operator , e t c .  

Using the  cen t r a l  difference pa t te rn :  

$" 

l e t :  

*' 
= a', 

e+C . 
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Also l e t  the  value of t ne  func t ion  
I r k  

po in t  Ut , PI  (e .g . ,  

a t  po in t  (a:, p:) as 

f(a,fi) be represented by 

f represents  f(a:,bz) ) and denote der iva t ives  

Using this notat ion tne  Taylor s e r i e s  expansion including terms containing 

des i red  der iva t ives  tnrougn the  fourtn order  i s  : 

(It can be seen tha t  t n i s  expression i s  equivalent  t o  tne  polynomial 
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5.3 F in i t e  Difference Expressions for a Rectangular Pat tern 

- 
For equal spacing h i n  t he  coordinate d( and f o r  equal spacing i n  
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Tne inverse equat ion i s :  

2 ' 2  -m -m 

I 
12 k 

-- 
I 

--a 
YZk 

I 
.-.p 

2 k" 

\ 

-i? 

--#p 2 -&* 
(5-3-2)  

5-6 



1 -  

I *  

From which tine desired f i n i t e  difference expressions can be ex t rac ted  as: 
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Tne same f i n i t e  difference re la t ionsnips  expressed i n  pa t t e rn  form a r e  : 

P ,  
-I 

ts 

0 

-8 

+ I  

I 

-I  

.3 

.a- . -\ 5-8 
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c 

It should be noted that by t runcat ing the  Taylor s e r i e s  expansion t o  include 

only  second order  terms s impl i f ied  expressions ( l e s s  accurate than tnose 

presented above) can be obtained fo r  the first and second " to t a l "  der iva t ives .  

Tnese a re :  

The f i n i t e  difference expressions for  a "square" mesn can, of course, be - 
obtained by s e t t i n g  equal to r( i n  the  re la t ionships  presented here. 

* 
If t h i s  i s  done the expressions become i d e n t i c a l  t o  tnose given by Shaw . 

* 
Lac. c i t .  
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5.4 

If tne  poin t  pa t te rn  used in tne  l a s t  sec t ion  i s  re ta ined  but  tne  spacing 

i s  considered t o  be a r b i t r a r y ,  tnen t h e  general matrix equation i s :  

F i n i t e  Difference Expressions f o r  Arb i t r a ry  Spacing 

. 
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Tne desired expressions f o r  the derivat ives  can be s t a t e d  e x p l i c i t l y  i n  

terms of t h e  values of the Function a t  the various po in t s  i f  the  inverse 

of the square matrix i s  ava i lab le .  However, t i e  manual inversion of this 

matrix would be a tedious t a s k  since i n  general  the coordinates csP eacn 

point  must be re ta ined  a s  a lgebraic  quan t i t i e s .  Use of f i n i t e  difference 

expressions f o r  a r b i t r a r y  tipuciag of L i e  m a h  pcints pr.&qs could be ac- 

complished most e f f i c i e n t l y  i n  conjunction with the  general  computer so lu t ion  

of the s h e l l  problem through use of a subroutine which would receive coordi- 

nates  af poin ts  i n  the mesh from the con t ro l l i ng  rout ine,  subs t i t u t e  them i n  

the matrix equation above, perform the inversion numerically, and re turn  tne 

des i red  coe f f i c i en t s  i n  the  analogous f i n i t e  difference expression t o  the 

con t ro l l i ng  rout ine for i n s e r t i o n  into tne governirig ecpation, following 

which the  combined coe f f i c i en t s  would be summed f o r  each point  t o  y ie ld  the  

s n e l l  equation f o r  the given central  po in t  i n  difference form. By repeat ing 

the process f o r  each c e n t r a l  po in t ,  tne  required s e t  d s n e l l  difference 

equations could be formed. 
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6. ANALYSIS OF MULTICELLULAR SHELL STRUCTURES 

6.1 General Considerations 

The problem considered i n  t h i s  chapter  i s  the  evaluat ion of e l a s t i c  s t r e s s e s  

and deformations i n  mul t i ce l lu l a r  s h e l l  s t ruc tu res  as shown i n  Fig.  6-1. 

s t ruc tu re  i s  subjected t o  c e r t a i n  s t a t i c  loadings such as i n t e r n a l  pressure,  

body forces ,  and temperature gradients .  If it i s  assumed that these loads a r e  

symmetric with respect t o  t h e  diametr ical  planes b i sec t ing  each p a i r  of c e l l s  

l oca t ed  opposite each o ther ,  only one-half of a c e l l  [Fig. 6-21 need be con- 

s idered  i n  an analysis .  Each c e l l  on the  o ther  hand i s  composed of four  bas ic  

s t r u c t u r a l  elements, namely: f l a t  p l a t e ,  segmented cone, sphere, and cy l inder  

as seen i n  Fig.  6-3. Refer r ing  t o  Fig.  6-3, it i s  noted t h a t  the  edge r o t a t i o n  

( w ~ )  along the  boundary l i n e  g h i j k l  i s  zero because of the  assumed s y m e t r i c  

loads .  

This 

The method of analysis  t o  be presented f o r  the  so lu t ion  of t h i s  complex s h e l l  

I s t ruc tu re  i s  s imi la r  t o  t h a t  of the  "s lope-deflect ion" method used i n  the 

ana lys i s  of indeterminate space s t r u c t u r e s  and the  " d i r e c t  s t i f fness" '  method 

used i n  the  analysis  of i dea l i zed  s t i f f e n e d  s h e l l  s t r u c t u r e s .  An advantage of 

t h i s  method i s  tha t  it i s  r e a d i l y  adapted t o  so lu t ion  by high-speed d i g i t a l  com- 

pu te r .  To p lace  the s t ruc tu re  i n  a form t o  which t h i s  method can be appl ied,  

i t  i s  "Cut" along boundary l i n e s  governed by the  geometry; i . e . ,  boundary of 

cone, sphere, e t c .  as seen i n  F ig .  6-3. Then it i s  necessary t o  solve each 

I Tsui,  E .  Y. W . ,  "Analysis of Haunched Octagonal Girder Space Frames," Journal  
of the  S t ruc tu ra l  Div., ASCE Proceedings Vol. 85, No. 3T 6, June 1959 

Deflection Analysis of Complex S t ruc tu res , "  J.A.s., V O ~  23, Sept 1956 
'Turner, M. J . ,  Clough, R.  W., Martin, H .  C . ,  and Topp, L. J . ,  "St i f fness  and 
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of the  ind iv idua l  s h e l l  segments s epa ra t e ly  under t h e  a c t i o n  of intermediate 

and edge loads and then j o i n  the  segments together  t o  form a continuous s t r u c t u r e  

by means of applying proper boundary loads or displacements. It i s  assumed that 

the  c u t  s t r u c t u r e  w i l l  be made continuous a t  a f i n i t e  number of d i s c r e t e  p o i n t s  

a long the  c u t  boundaries. The general  scheme i s  t o  develop a " s t i f f n e s s  matrix'' 

f o r  each s h e l l  segment which r e l a t e s  boundary fo rces  t o  boundary displacements 

of the  s h e l l  segments. Then a t  the  juncture  of any two o r  more segments the  

fo rces  must be i n  equilibrium and the  displacements must be compatible. A t  

those po in t s  which are n o t  juncture  po in t s  b u t  a r e  boundaries of t he  s t r u c t u r e  

e i t h e r  the  f o r c e s  o r  displacements must be known. From t h i s  given information 

a s e t  of simultaneous equations can be developed t o  solve f o r  t he  unknown d i s -  

placements a t  a f i n i t e  number of p o i n t s .  These equations are expressed i n  

terms of the  s t i f f n e s s  c o e f f i c i e n t s  of t he  ind iv idua l  s h e l l  elements, known 

boundary fo rces  and displacements, and boundary fo rces  due t o  the  intermediate 

loads .  A f t e r  the unknown displacements are computed the  fo rces  a t  the  d i s c r e t e  

p o i n t s  a r e  obtained through use of the  s t i f f n e s s  matrix.  This then y i e l d s  

forces  and displacements along the  c u t  boundaries which produce a continuous 

s t r u c t u r e .  Once the  boundary condi t ions a r e  known s t r e s s e s  and displacements 

i n t e r n a l  t o  the  s h e l l  segments can be computed. 

6.2 S t r e s s  and Deformation of S h e l l  Segments Under Intermediate Loads 

A s  a f i r s t  s t e p  i n  the  o v e r a l l  a n a l y s i s  of a m u l t i c e l l u l a r  s h e l l  s t r u c t u r e  it 

i s  required t o  obtain a so lu t ion  f o r  s t r e s s e s  and deformations of t h e  s h e l l  

segments [Fig. 6-31 with t h e i r  edges f i x e d  from displacement and r o t a t i o n  

subjected t o  intermediate loads such a s  pres su re ,  thermal g rad ien t s ,  e t c  The 

th ree  governing d i f f e r e n t i a l  equations i n  terms of  t he  displacement components, 

6- 5 



u , v , w f o r  a l l  of t he  s h e l l  segments are given by equation (3-4-18) and 

t he  c o e f f i c i e n t s  of this equat ion are  given i n  Table 3-5-2. When the  she l l  

segments are of uniform thickness  the governing equations a r e  given by equa- 

t i o n s  (3-5-2) through (3-5-5). Let L [u , v , w] denote the l i n e a r  opera tor  

or" t he  governiug equations an3 g(a , E )  

of the  intermediate  l m d s .  The independent va r i ab le s  (;Y , B a r e  orthogonal 

c u r v i l i n e a r  coordinates and f o r  the  spec i f i c  s h e l l  segments these va r i ab le s  

a r e  given i n  Table 3-5-1. 

through (3-5-5) i n  f u l l  t he  governing equations a r e  given by 

L,. - 
ut: i:igIit i i t x i i i  si62 which IS s ~ ~ i i z t i o r ;  

Then ins tead  of wr i t i ng  equation (3-4-18) o r  (3-5-2) 

For a p l a t e  the  equations uncouple so that it i s  required t o  solve two sets 

of equations; i .e . ,  one f o r  u , v and the o the r  f o r  w . A t  the  s h e l l  

boundary we requi re  that the displacement and rokat ion vectors  be zero  

= & =  01 . This implies ,  as seen i n  sec t ion  3.6, t h a t  the  displacement 
Lv 

components and normal der iva t ion  of w a r e  zero 

(6- 2- 2) 

The boundary curve i n  terms of t he  spec i f i c  s h e l l  coordinates can be obtained 

by t h e  methods descr ibed i n  Appendix I. These a r e  shown i n  Fig. 6-4 f o r  a 

Symmetry i s  implied 2 .  given s e t  of dimensions R , R1 , Ro , cpl and cp 

ac ross  the  cen te r l ine  due t o  the  loading and geometry. Because of the complex 

boundary curve of some of the  s h e l l  segments it i s  f e l t  that a so lu t ion  of 

t h e  p a r t i a l  d i f f e r e n t i a l  equations (6-2-1) w i t h  boundary conditions (6-2-2) 

should be obtained by f in i t e -d i f f e rence  methods. 
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The scheme i n  f i n i t e - d i f f e r e n c e  methods i s  t o  replace the  continuous problem 

by one having a f i n i t e  number of var iab les .  

the  independent var iab les  

may be determined by the  i n t e r s e c t i o n  of a f in i t e  number of "mesh" l i n e s .  Thus 

a rectangular  mesh such as i s  shown in Fig. 6-5 produces a T i u i t e  iimbei- of 

"mesh poin ts"  ( p i v o t a l  po in ts ,  nodal p o i n t s )  such as A . Some o ther  meshes 

which f i l l  the e n t i r e  space are square, t r iangular ,  and hexagonal. 

To accomplish this d i s c r e t i z a t i o n  

(CY , 8 )  are  replaced by a number o f  po in ts  which 

Fig.  6-5 Rectangular Finite-Difference Mesh 

Now, each of the  dependent var iab les  u(@ , e )  , v(Ly e )  w(Q' Y e )  i s  

j vj , w j  defined only a t  the mesh poin ts  i '  i i 
replaced by the var iab les  u 

(i j )  . If f i n i t e - d i f f e r e n c e  expressions for der iva t ives  of the dependent 

v a r i a b l e s  a r e  developed [see Chapter 53 f o r  a given mesh type the governing 

equat ion (6-2-1) can be replaced b y  an algebraic  equation ( t h i s  implies 3 

equat ions)  a t  a mesh p o i n t  i n  te rns  of 

of mesh poin ts .  

u j  , v j  , w j  i i i 

Then an algebraic  equation can be w r i t t e n  a t  each mesh poin t  

a t  a spec i f ic  number 

i n s i d e  and on the boundary curve. I n  a l l  cases a s u f f i c i e n t  number of equa- 

t i o n s  can be wr i t ten  f o r  t h e  unknowns. Hence, t h i s  f i n i t e  difference method 
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replaces  equat.ioos (6-2-1) and (6-2-2) by a s e t  of simultaneous equations 

AX = B (6-2-3) 

where X i s  a column vec to r  o f  dependent va r i ab le s  (ui , vj , w'?) 

i s  a column vector of  intermediate  loads and A i s  a square matrix.  

B 
i 

As an example of wri t ing  t h e  governing d i f f e r e n t i a l  equation i n  difference 

form we consider a uniform thickness cy l inder .  The governing equations a r e  

given by equation (3-5-4) as 

I 

= - R (p, - - NT + M j n  T + - )  MJ :e 

R2 R + c w ,  7 8.58 + 

For  the cyl inder  l e t  the boundary curve be given as e = constant ,  

x = constant  and two l i n e s  of symmetry as shown i n  Fig.  6-6. This domain i s  

now covered by a uni .form rectangular  mesh which ha 
e 

.s mesh l i n e s  that coincide 

x t  

Fig.  6-6 Rectangular Mesh f o r  Cyl indr ica l  She l l  Segment 



w i t h  the boundary curve r . For this p a r t i c u l a r  mesh the  de r iva t ives  are 

given by equation (5-3-3). I n  order t o  wr i te  a s u f f i c i e n t  number of equations 

f o r  the unknowns it i s  necessary that t h e  lower order  equat ions such as given 

by equat ion (5-3-4) be used. It w a s  found t h a t  f o r  t h i s  p a r t i c u l a r  problem 

i f  lower order  second de r iva t ives  and a lower order  t h i r d  ae r iva t ive  uf -f 

in e as given by 

were used, t h e  r e s u l t i n g  d i f fe rence  equations are v a l i d  a t  a l l  mesh po in t s ,  

and tha t  a s u f f i c i e n t  number of equations were obtained f o r  the  unknowns. 

d These d i f fe rence  equations a r e  : 

= c: 
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s- 4 Cm=-D/(R K 

Although the  f i n i t e - d i f f e r e n c e  method i s  simple i n  p r i n c i p l e  t h e  d i s c r e t i -  

za t ion  gives r i s e  t o  a number of p r a c t i c a l  problems such as graded nets, 

curved boundaries, and the  so lu t ion  of a l a rge  s e t  of simultaneous equations.  

These have been discussed by Forsythe 3 Col la tz  , and Varga . The formulation 1 2 3 

and so iu t iou  of eq-uation (6-2-3) i s  perhaps the  most i q o r t a n t .  and t i m e  con- 

suming p a r t  of the  a n a l y s i s  and i s  discussed i n  Appendix I V .  

Once the  displacements a r e  known the i n t e r n a l  s t r e s s  r e su l t an t s  and couples 

can be computed by equations (3-4-12, 13, 14 and 16). Along the  s h e l l  boundary 

th ree  components of s t r e s s  r e su l t an t s  and a s t r e s s  couple as given by equations 

(3-6-7a-d) can be computed a t  each mesh poin t .  

as the  f i x e d  edge forces  

These quan t i t i e s  are denoted 

Ff which a r e  given by the  column vector 

I -  

- 
N 

Ff = (ij (6-2-7) 

'Milne, W .  E . ,  Numerical Solut ion of  D i f f e r e n t i a l  Equations, John Wiley & Sons, 
New York, 1957 

'Collatz, L. , The Numerical Treatment of D i f f e r e n t i a l  Equations, Springer-Verlag, 
Ber l in ,  1960 

3Varga, R. S . ,  Matrix I t e r a t i v e  Analysis, Prent ice-Hal l ,  Inc.  a New York, 1962 
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This equation will be used d i rec t . ly  i n  the  complete ana lys i s  and ent.ers i n  

s e c t i o n  6.3. 

The preceding presents  a method t o  ob ta in  a so lu t ion  of s h e l l  segments with 

t h e i r  edges f ixed ,  due t o  intermediate loads .  

6.3 S t r e s s  and Deformation of S h e l l  Segments due t o  Edge E f f e c t s  

To apply the  s lope-deflect ion method it i s  required t o  determine a s t i f f n e s s  

matrix f o r  each s h e l l  segment. 

denoted by i = 1 , 2 , 3 -- n as shown i n  F ig .  6-7. A t  each po in t  t he re  

a r e  [see s e c t i o n  3.6) fou r  boundary f o r c e s  

Let po in t s  on the  boundary of a s h e l l  be 

Fi 
and fou r  displacement components 

1 

Fig .  6-7 S h e l l  Segment 

b i  which represent  r e spec t ive ly  

6-1 3 

(6- 3-la,  b) 
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For a p e r f e c t l y  e l a s t i c  shell segment i f  a u n i t  displacement 

duced a t  the  boundary poin ts  1 , 2 , 3 -- n , the  induced force  

( L $ ) ~  i s  intra- 
- 
3 at 

due t o  these displacements can be expressed as 
- 

where k. a r e  the s t i f f n e s s  influence coe f f i c i en t s .  I n  general  f o r  a given 

s h e l l  segment we can wr i te  the  cons t i tu t ive  edge r e l a t i o n s  i n  matrix from 
l j  

as 

F = k 6  (6- 3-2 1 

The c o e f f i c i e n t s  of k must be computed by methods such as the  f i n i t e - d i f f e r -  

ence method given i n  s e c t i o n  6.2. 

follows. One displacement component i s  given a u n i t  value while the o thers  

a r e  taken t o  be zero. T h i s  u n i t  displacement i s  appl ied a t  each boiindary 

p o i n t  i . e . ,  i = 1 , 2 , 3 -- n i n  succession and the  r e s u l t i n g  boundary 

f o r c e s  are computed a t  each of the boundary poin ts .  The s t i f f r z s s  influence 

c o e f f i c i e n t s  a r e  then equal t o  the  respect ive force values.  

A procedure t o  obtain the  coe f f i c i en t s  of k 

When the  s h e l l  i s  acted upon by intermediate loads a d d i t i o n a l  forces  must be 

added t o  equation (6-3-2), that is ,  the  forces  obtained from f i x e d  edge support 

[Eq. (6-2-7)]. Then equation (6-3-2) becomes 

(6-3-3 1 f F = k 6 + F  

It i s  noted t h a t  the inverse of the s t i f f n e s s  matrix k i s  c a l l e d  the f l e x i -  

b i l i t y  matrix "at1 and the  elements of "a" a r e  c a l l e d  the f l e x i b i l i t y  

in f luence  c o e f f i c i e n t s  (aij)  . 
6-14 
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6.4 Equilibrium Conditions and Compatibili 

of She l l  Segments 

YF, 

When two o r  more s h e l l  segments a re  connected and a r e  required t o  form an 

i n t e g r a l  s t ruc ture ,cont inui ty  requirements of t h e  boundary fo rces  F and 

displacements 6 must be s a t i s f i e d  a t  the juncture .  From sec t ion  3.6 on 

boundary conditions the requirements f o r  two s h e l l s  a r e  

J 

(6-4-la-d) 

- 
where cu N and have three  components each while u and have 

only one. For a general s h e l l  s t ruc tu re  it i s  somet,imes des i rab le  t o  decom- 

pose the forces  and displacements along rectangular  coordinate d i r ec t ions  so 

t h a t  t he  components of s h e l l s  1 and 2 ,  f o r  ins tance ,  are taken i n  the  same 

d i r ec t ion .  To t h i s  end, we can wr i te  

then 

(6-4-2a-c ) 

I 

J 
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and t he  displacement 

has components 

When the  s lope-deflect ion equations are employed the s ign  of the  forces  and 

displacements are such t h a t  the  vec tor  sum of forces  a t  a poin t  a r e  zero and 

the  displacement components a r e  equal.  Thus i f  po in ts  1 3 and 5 form 

a common juncture  A and Fi 6i denote the  force and displacement vector  

i n  equat iom(6-4-4aYb) a t  a poin t  i , then the  equilibrium and cont inui ty  

requirements a t  poin t  A are 

(6-4- 5a, b ) 

Note that F and 6 are column vectors and equation (6-4-5a) denotes four  

equat ions and equation (6-4- 5b) denotes e igh t  equations. 
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6.5 General Procedure of Analysis 

A t  t h i s  s tage it i s  assumed t h a t  s t i f f n e s s  matrices have been obtained f o r  

a l l  s h e l l  segments employed i n  a given s t ruc tu re  and t h a t  it i s  poss ib le  t o  
n 

obta in  the  boundary forces  F1 due t o  intermediate loads .  It i s  required t o  

obta in  a so lu t ion  of the  e n t i r e  s t ruc tu re  under the prescr ibed intermediate 

loading and boundary condi t ions.  

The so lu t ion  proceeds as follows: 

1) A f i n i t e  number of po in ts  a r e  chosen along the cu t  s h e l l  boundaries 

a t  which cont inui ty  w i l l  be s a t i s f i e d .  

2) From equilibrium requirements, equations of the  type of equation (6-4-5a) 

a re  wr i t ten  a t  each juncture po in t .  

not juncture poin ts  6 o r  F or components thereof must be given. 

This yields  a number of simultaneous l i n e a r  equations i n  terms of 

unknown forces and displacements. 

A t  po in ts  on a boundary which are 

3) The unknown forces  a r e  r e l a t e d  t o  displacements and f i x e d  edge forces  

by means of the s t i f f n e s s  matrix [equation (6-3-3)]. Then by means of 

the cont inui ty  of displacements [equation (6-4-5b)I a s e t  of a lgebra ic  

equations i s  obtained i n  the  unknown displacements 

- 
= F (6-5-1) 

where a r e  the redundant displacements, K the s t i f f n e s s  matr ix  

of the e n t i r e  s t ruc tu re ,  and F i s  a func t ion  of known da ta .  
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4) Once a so lu t ion  of equation (6-5-1) i s  obtained for gR the 

forces  a t  the  juncture poin ts  a r e  found by equation (6-3-3) .  

This i n  e f f e c t  solves the  e n t i r e  problem since so lu t ions  i n t e r n a l  

t o  each s h e l l  segment can be obtained once the boundary conditions 

a r e  given. 
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7. CONCLUSIONS AND RCCOMMENNTIONS 

7.1 Conclusions 

A s  a r e s u l t  of an extensive l i t e r a t u r e  search, it i s  observed t h a t  no 

a n a l y t i c  procedure e x i s t s  t h a t  could be app l i ed  d i r e c t l y  i n  the  evaluat ion 

of t he  s t r e s s  f i e l d s  pecu l i a r  t o  the  mul t i - ce l l  juncture configurat ion as 

spec i f i ed  by NASA/MSFC. Consequently, i t  i s  believed, a t  l e a s t  f o r  the  present  

time, t h a t  the most f e a s i b l e  method of handling such a problem i s  t o  solve it 

numerically by means of high-speed d i g i t a l  computers. 

The necessary invest igat ions required t o  formulate the  theory a d  a numerical 

method f o r  the  p red ic t ion  of the membrane and bending s t r e s s e s  and the  cor- 

responding deformations of m u l t i c e l l u l a r  s h e l l  s t r u c t u r e s  have been performed. 

The method of so lu t ion  i s  presented i n  terms of loads ,  geometry and material 

p r o p e r t i e s .  

It should be pointed out ,  however, t h a t  the  r e s u l t a n t  method of a n a l y s i s  

considers only the  e l a s t i c  theory of s t r e s s e s  as i t  a p p l i e s  t o  t h i n  s h e l l  

s t r u c t u r e s .  

i n t o  account and orthotropic p l a t e  and c y l i n d r i c a l  s h e l l  elements have a l s o  

been considered. 

Thermal stresses due t o  temperature g rad ien t s  have been taken 

I n  view of t he  general a spec t s  of r e s i d u a l  s t r e s s e s  i n  welded s t r u c t u r e s  

(Appendix 111)) i t  i s  f e l t  t h a t  t he  j o i n t  e f f i c i e n c y  and a t t e n u a t i o n  l eng th  

of welds should be incorporated i n t o  the  t h e o r e t i c a l  ana lys i s  through t h e  

experimental determination of r e s i d u a l  s t r e s s e s .  
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In order t o  ensure the  f e a s i b i l i t y  of t h e  numerical procedure developed i n  

the  present  work, a d i r e c t  method of solving l a rge  systems of simultaneous 

equations has a l s o  been developed (Appendix IV) . Check problems involving 

1700 equations have been solved by this method i n  the  J B M  70%. 

f o r  such a problem i s  about s ix teen  minutes using double prec is ion  a r i thmet ic .  

This accomplishment exceeds expectations a t  the s tar t  of the  inves t iga i iua ,  

and ind ica t e s  t h a t  t he  present  procedure i s  prac t icable  f o r  the so lu t ion  of 

s t r e s s  problems i n  m u l t i c e l l u l a r  shell s t ruc tu res .  

Run t i m e  

. 7.2 Recommendations f o r  Further  Invest igat ions 

Based on the  experience and r e s u l t s  obtained i n  the present  work, it i s  recom- 

mended that t he  following addi t ional  inves t iga t ions  should be made: 

1. Development of workable d i g i t a l  programs f o r  the  s t r e s s e s  and deforma- 

t i o n s  of the  spec i f i c  s t ruc tures  using both i so t rop ic  and or thotropic  

s h e l l  segments. This work shall include: 

developed programs, (b )  optimization of mesh s i ze  and t o t a l  computer 

running time, presumably using the  ava i lab le  method of solving l a rge  

sets of equations recent ly  developed by LEX, ( c )  numerical examples 

t o  i l l u s t r a t e  how t h e  ana ly t ic  procedure i s  c a r r i e d  out,  e s p e c i a l l y  

i n  the  process of evaluating the influence coe f f i c i en t s  of s h e l l  

segments as wel l  as sa t i s fy ing  the  compatibi l i ty  conditions along 

the s h e l l  junctures .  

(a )  flow cha r t s  of t h e  

2. Experimental determination of the p a t t e r n  of res idua l  s t r e s s e s  f o r  

c e r t a i n  s p e c i f i c  welded connections t o  be used i n  the  s t ruc tu res  
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under consideration, using the  same type of ma te r i a l  and welding 

process as f o r  t he  prototype s t r u c t u r e .  

include the t e s t i n g  of l a r g e  samples of specimens and the  app l i -  

c a t i o n  of t he  r e s u l t s  t o  determine the j o i n t  e f f i c i e n c i e s  of welds 

through a j u s t i f i e d  theory of f a i l u r e .  

This work should a l s o  

3.  Conduct invest igat ions on the  e f f e c t s  of various poss ib l e  means of 

s t r e s s - r e l i e f  on l a rge  welded s t r u c t u r e s .  

4. Using the p re sen t  available formulation, evaluate  the  buckling loads 

of b o t h  i so t rop ic  and or thotropic  segmental c y l i n d r i c a l  s h e l l s  with 

displacements s a t i s f y i n g  appropriate boundary condi t ions.  

5. F e a s i b i l i t y  study of p red ic t ing  the dynamic response of the bulkhead 

elements due t o  c e r t a i n  simple fo rc ing  funct ions,  including the  

approximate determination of the  na tu ra l  frequencies of s h e l l  segments. 

This can be done numerically by means of t he  ava i l ab le  equations 

developed i n  the present  work with p e r t i n e n t  i n e r t i a  terms added t o  

the  corresponding equations of equilibrium. 
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Appendix I 

I. CZOMETRY OF T a  BULKHEAD 

In this appendix the geometry of the bulkhead s t ruc ture  i s  completely 

defined. This includes the necessary dimensions, coordinate systems, and 

in te rsec t ion  of the component she l l s  which comprise the  bulkhead. 

1.1 Dimensions of Bulkhead 

Referring t o  Fig. 1-1, the geometry of  the bulkhead s t ruc ture  can be completely 

determined i f  the following f i v e  quant i t ies  are given: 

2 -  R , R1 2 Ro , cpl and 'p 

For pa r t i cu la r  bulkheads these quant i t ies  a re  r e s t r i2 t ed  i n  the following 

manner : 

20 , wnere N = number or' c e l l s  = 4 , 6 , 8 --- l-r - - -  
'p1 N 

Tne t rue  dimensions whicn w i l l  be frequently re fer red  t o  i n  tne development 

of tne  numerical analysis  a r e :  

- 
ab = (R1 - R )  cot  'p2 

- - - 
3 bd = be = be cos cp 

1-1 
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- n 
(P4 - 2 - 'p3 

- 
ah = (R1 - R) cos cpl 

- 
ch = (R1 - R )  s i n  'pl 

'95 = cos-l (EE) 

5 % = R s i n  cp 

- - 
ag = an + % 

- 
2 + 9) b i  = R sec ( c p  0 

- 
2 bj = R cosec (P 0 

I- 2 
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1.2 Geometry and Coordinate Systems f o r  Spec i f ic  She l l  Surfaces 

Tne equations f o r  a sphere, cone, cyl inder  and p l a t e  a r e  given f o r  a system 

of rectangular  coordinates ( X  , Y , Z )  . 
l i n e a r  coordinates a r e  presented f o r  eacn of the s n e l l  elements. 

information the f i r s t  fundamental form, equation ( 3 - 2 - 3 ) ,  and the base vectors ,  

equation (3-2-4), of the surface a re  given. 

form, equation (3-2-10), the  p r i n c i p a l  r a d i i  of curvature a r e  obtained. 

Then a system of orthogonal curvi-  

From t n i s  

By use of the second fundamental 

A .  

\ 

A- 

*& \ /  
Fig. 1-2 Geometry of Spnere 

A.l Equation of Spnere 

The equation of a sphere i n  tne  rectangular  coordinate system X , Y , Z i s  

fS = x 2 + y 2 + z 2 - 2  = 0 (1-2-1 ) 

A .  2 Curvilinear Coordinates 

2 If the c u r v i l i n e a r  coordinates 

duced, then the r e l a t ion  between X , Y , Z and (p , 8 i s  

X1 = rp , X = 0 defined by Fig.  T-2 a r e  intra- 
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. 

~ 

A . 3  F i r s t  Fundamental Form 

From equation (3-2-3) and equation (3-4-1) t n e  f i rs t  fundamental form of the 

sur face  of the  sphere can be w r i t t e n  as 

If the uni t  base vec tors  of tne  

i a j a k , 

X , Y , Z , coordinate system a r e  designated 
- 

then the  radius  vec to r  2 i s  

CI r =Xi +Yj+Zk . (s-2- 4') 

By equat ion (I-2-2), equation (1-2-4) can be w r i t t e n  i n  terms of e and 'p as 

I- 5 
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The der iva t ive  of with respec t  t o  0 and cp are 

r 

Tneo the tam& parameters 

A,=R , 

- 
and, s ince r = O  

coordinates.  

+ l e  -99 

n Q COS e) k} 
Y 

(L-2- 6 o - b) 

8 , form an ortnogonal system of cu rv i l i nea r  

The u n i t  base vectors of t he  middle-surface a r e  

A . 4  Second Fundamental Form 

By use of the  second fundamental form equation (3-2-10) it i s  poss ib le  t o  

obta in  the  pr inc ipa l  r a d i i  of  curvature as given by equation (3-4- lb)  when 

the  coordinates coincide witn l i n e s  of p r i n c i p a l  curvature .  Tne r a d i i  r1 

and r can then be found, and it can be proved t n a t  t he  coordinates a r e  2 

1-6 
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l i n e s  of p r inc ipa l  curvature by the following argumert 

(1-2-9 a-c) 

Afte r  performing the above sca l a r  products i t  can be seen t h a t  the p r inc ipa l  

radii  of curvature a r e  

B.  Geometry of Cone 2 
I 

I Fig. 1-3 Geometry 

B.l Equation of Cone 

(1-2 - IO 1 

lz’ 

The equation of a cone i n  the rectangular coordinate system X’ , Y‘ , Z’ is 

(1-2- \I 1 

1-7 
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By a r o t a t i o n  of coordinates through the angle 

i n  the  rectangular  coordinate system X , Y , Z i s  

+t the equation of a cone 

B. 2 Curvi l inear  Coordinates 

2 
If the  cu rv i l i nea r  coordinates X1 = x; X 

then t i e  r e l a t i o n  between X , Y , Z and x , 8 i s  

= 8 shown i n  Fig.  1-3 a r e  introduced, 

x +os+ 3 - cos0 1 cos+2 9 

B. 3 F i r s t  Fundamental Form 

Following tine procedure s e t  f o r t n  f o r  the  spnere t h e  radius  vector  i n  terms 

of x , 8 i s  

(I-2-15a-b) 

1-8 
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Tnen the Lam& parameters A1 I A2 are found t o  be 

A,= I ¶ 

A , = x s I ~ + ~  , 
- 

and s ince  

coordinates.  

r' r =o 
-'x -30 

, x , 8 form an orthogonal system of curv i l inear  

The u n i t  base vectors  of the middle-surface a r e  

. 
B.4  Second Fundamental Form 

I n  a manner s i m i l i a r  t o  t i e  sphere tne  p r inc ipa l  radii of curvatures f o r  the 

cone a r e  determined by equation (1-2-9) and equation (1-2-17). 

t he  required operations tne pr inc ipa l  radii of curvature a r e  found t o  be 

Af t e r  performing 

$ = a 3  F 

5 = x +an+ 
3 .  

(1-2- 18) 
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t' 

1 Fig. 1-4 Geometry of Cylinder 

C .1 Equation of Cylinder 

The equation of a cylinder i n  the  rectangular  coordinate system 

i s  

X , Y , Z 

C .2 Curvilinear Coordinates 

1 
If the  cu rv i l i nea r  coordinates X 

introduced, then t h e  r e l a t i o n  between X , Y , Z and x , 8 i s  

= x ; X' = 8 shown i n  F ig .  1-4 a re  

x =  R c o e Q  > 

y =. 9 SlQ e 

7. = - x  . 
C . 3  F i r s t  Fundamental form 

- 
The radius  vector  2 i n  terms of x , 8 i s  

(I- 2 - 2 0 4  
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and the der iva t ives  w i t h  respec t  t o  x and 0 are 

I '  

. 

1 (1-2- 22) 
7 =-Rst f& +R co&j 
-)e 

/ 
The Lame parameters AI and A2 are found t o  be 

A = I  
f i t -  1 7 

A,=R , 
(1-2-2 3) 

and s ince  

coordinates .  

1; ce =O ; X ,e form an  ortnogonal system of cu rv i l i nea r  

Tne u n i t  base vec tors  of the middle surface are 

zji -I I+ Y 

(r- 2-24 0-C) 

0 =, cosQi +s tnQj  
-3 

(2.4 Second Fundamental form 

In a manner s i m i l i a r  t o  tile sphere %ne p r i n c i p a l  radii of curvature f o r  t he  

cy l inde r  are determined by equation (1-2-9) and equation (r-2-24). 

performing the  requi red  operat ions t n e  p r inc ipa l  r a d i i  of curvature a r e  found 

t o  be 

A f t e r  

y = o 6  , 

r , = R  , 

I- 11 
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D. Geometry of P l a t e s  

D.l Equation of P l a t e s  

The equation of tie p l a t e  which i n t e r s e c t s  t h e  cyl inder ,  sphere and  cone i s  

given by 

c 1 

f = Y - ton  * (9, - R) +x I = 0 f: . 
Tne equation of the p l a t e  wnich i n t e r s e c t s  the  cone i s  given by  

(1-2-2 6 )  

1-12 



1 . 3  Geometry of the In t e r sec t ion  of the S h e l l  Elements 

* The i n t e r s e c t i o n  of two surfaces i s  a curve common t o  both. 

coordinates  obtained by solving the  equation of the  two surfaces  simultaneously. 

If i s  the rg*Ls yector  of the  curve (Fig. 1-5) then the uni t  vector  tangent 

Tnis curve has 

I _  E 
cy 

-& . O C X - 3 -  I 1 %- ds t o  t h e  curve i s  

Fig. 1-5 In t e r sec t ion  Curve 

The geometry of the  i n t e r s e c t i o n  i s  important i n  the considerat ion of the  

boundary condi t ions of t h e  snel l  elements. 

the angle between 

Tnis angle i s  obtained by 

It i s  shown in s e c t i o n  3.6 t n a t  

and 5 i s  necessary t o  define the boundary condi t ions.  % -1 

To determine cos A an expression for i s  needed. Tnis i s  given by 

(I- 3 - 2 ) 

when the  coordinates  coincide witn ortnogonal l i n e s  of curvature .  

i n t e r s e c t i o n  curve the  coordinates are not independent and are r e l a t e d  by 

For the  

t h e  i n t e r s e c t i o n  equation. If tne  i n t e r s e c t i o n  equation i s  d i f f e r e n t i a t e d  

1-13 



i m p l i c i t l y  and tne d e f i n i t i o n  

df3= f d a  a-3-4) 

is used, tnen equation (1-3-3) can be wr i t ten  as 

The d i r e c t i o n  cosine i s  now given by 

where f i s  defined by equation (1-3-4) and t n e  i n t e r s e c t i o n  r e l a t i o n  i s  

imposed. Following i s  a summary of the i n t e r s e c t i o n  equations and d i r e c t i o n  

cosines of the  bulkhead s h e l l s .  

A .  Sphere 

A .1 Spnere and Cylinder I n t e r s e c t i o n  

Tne i n t e r s e c t i o n  of tne spnere and cyl inder  i s  found by solving equation 

(1-2-1) and equation (1-2-18) simultaneously t o  y ie ld  

Then by s e t t i n g  equation (I-2-2c) equal t o  zero the required i n t e r s e c t i o n  

equation between 9 and 0 can be obtained as 

(I- 3-71 

Tne d i rec t ion  cosine f o r  t h i s  i n t e r s e c t i o n  i s  obtained by equation (1-3-6) and 

I- 14 
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A.2 Sphere and P l a t e  In t e r sec t ion  

An equation between and 8 a t  t i e  i n t e r s e c t i o n  of the sphere and p l a t e  

i s  found by s u b s t i t u t i n g  equation (1-2-2a, b )  i n t o  equat ion (1-2-26) t o  y i e ld  

Since equat ion (1-3-9) can not be solved e x p l i c i t l y  f o r  0 o r  rp a simple 

expression can not be obtained f o r  the d i r e c t i o n  cosine.  Tne equations required 

t o  solve fo r  cos h are: 
i 

(r- 3- I O  Q- b) 

and equat ion (I- 3-9). 
t 

A . 3  Sphere and Cone In t e r sec t ion  

Referr ing t o  Fig. 1-1, it i s  seen that t h e  spnere i n t e r s e c t s  t h e  cone such 

t h a t  

0 * Ie lQ8,  > 

i s  found by equation (1-3-9) i n  which 9 i s  s e t  equal  t o  9, 
@C 

whe r e  

The d i r e c t i o n  cosine along t n i s  i n t e r sec t ion  i s  

cosx=o . 

1-15 
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cos  h = 0 

B.2 Cone and P l a t e  #1 

I f  equation (1-2-13) i s  s u b s t i t u t e d  i n t o  equation (I-2-26), tne  required i n t e r -  

s ec t ion  equation i s  found as 

sine - +on 0, +*case = + O n 4 1  SIfi 43 [cos srn +% 1 -  
It can be shown t n a t  t n e  so lu t ion  of t h i s  equation f o r  8 y i e l d s  

Tnus t h e  i n t e r s e c t i o n  r e l a t i o n s  are 

8 = 8 C . 

0 & % 6  x, f 

e=+-e, ) 

CZ- 3- 1.5 1 

It i s  found t h a t  cos h along t h i s  cone p l a t e  i n t e r s e c t i o n  i s  given by 

c o s h = ? 1  . (1- 3- 16) 

I- 16 

. 

B. Cone - 

B.l Cone and Sphere I n t e r s e c t i o n  

I n  terms of t he  coordinates of the eone the  i n t e r s e c t i o n  of the  cone and sphere i s  

where €Ic has been defined i n  equation (1-3-11). 

Again t'ne d i r e c t i o n  cosine i s  found t o  be 

6- 3- 130-b) 

(1- 3 - 14) 
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B.3 Cone and P l a t e  #2 

In a similiar manner as p l a t e  #1, the i n t e r s e c t i o n  of the  cone and p l a t e  #2 

i s  found by s u b s t i t u t i n g  equation (I-2-13a) i n t o  equation (1-2-27) t o  y i e l d  

x = -  Re > (1- 3-17 1 + + p n  + +sin + +e5 4 r f i s ~ l  
2 3 2”- J 

f o r  a l l  0 . However, 0 i s  r e s t r i c t e d  t o  - + Qc by p l a t e  #l. 

Along this  i n t e r s e c t i o n  

D. Cylinder 

D.l Cylinder and Sphere In te rsec t ion  

A s  seen before tne cy l inder  i n t e r sec t s  t he  sphere a t  Z = 0 . Tnus, the 

i n t e r s e c t i o n  r e l a t i o n s  are 

x = o  

for  a l l  0 

J 

3 

and the  d i r e c t i o n  cosine i s  

cos A = 0 (. 

(L-3-19) 

0- 3- 2 0 )  

D.2 Cylinder and P la t e  #1 

From Fig. 1-1 it i s  seen t i a t  t h e  cy l inder  i n t e r s e c t s  tne p l a t e  such t h a t  

e = = + ,  2 

f o r  a l l  x 

1-17 

(r- 3-21 
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Tne d i r e c t i o n  cosine i s  

cos h = * 1 U-3-22) 

1-18 
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Appendix I1 

I1 ANISOTROPIC PIATES AND CYLINlERS 

11.1 Introduct ion 

It i s  sometimes des i rab le  t o  construct  s h e l l s  having high bending s t i f f n e s s  

t o  increase i t s  buckling s t r e n g t h  o r  t o  make it capable of carr;v"rl;g 2wcen- 

I 

t 

t r a t e d  loads.  

s t r u c t i o n  and by i n t e g r a l  s t i f f e n e r s  on one s ide  of t he  s h e l l .  The important 

t h i n g  which the ana lys t  does not want t o  lo se  s igh t  of i s  the  p o s s i b i l i t y  of 

s a c r i f i c i n g  t ransverse shear s t i f f n e s s  i n  t rade  f o r  a gain i n  bending s t i f f -  

ness. This can happen i n  two ways; e i t h e r  as a consequence of the t ransverse 

shear  s t i f f n e s s  being decreased and approaching the bending s t i f f n e s s  i n  magni- 

tude o r  as a consequence of a very "sof t"  core. 

becomes appreciably more complicated i n  nature and does not  apply without 

modifications t o  include the  e f f ec t s  of shear deformations. It i s  important 

t h a t  a subs tan t ia l  increase i n  bending s t i f f n e s s  can be obtained without an 

appreciable increase i n  weight i n  these cases.  I n  t h i s  appendix, considera- 

t i o n  i s  given t o  p l a t e s  and cyl inders  of uniform thickness  s t i f f ened  by r i b s  

and s t r inge r s  i n t e g r a l l y  a t tached t o  one s ide  as shown i n  Fig. 11-1. 

r i b s  and s t r i n g e r s  a r e  assumed t o  be orthogonal t o  each other .  

T h i s  increased bending s t i f f n e s s  i s  achieved by sandwich con- 

I n  e i t h e r  case the ana lys i s  

The 

If t h e  spacing between r i b s  and s t r inge r s  i s  l a rge  it i s  necessary t o  analyze 

t h e  s t ruc tu re  as if it were composed of s h e l l  panels and s t i f f e n e r s .  However, 

when the spacing i s  small it i s  desirable  t o  consider the  l imi t ing  case which 

i s  an anisotropic  s h e l l .  The o n l y  difference between an i so t ropic  and aniso- 

t r o p i c  s h e l l  i s  the  form of Hooke's l a w .  Thus it i s  f i r s t  necessary t o  obtain 

11-1 
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c 

a set of c o n s t i t u t i v e  equations,  then the governing d i f f e r e n t i a l  equations are 

obtained i n  a manner similar t o  the  i so t rop ic  s h e l l .  

that of Flcgge 

The development follows 

1 2 while t h e  nota t ion  i s  that of Dow . 

11.2 Cons t i tu t ive  Equations 

I n  order  t o  w r i t e  t h e  c o n s t i t u t i v e  equations f o r  a s h e l l  element, t he  stress- 

s t r a i n  r e l a t i o n s  must be known f o r  individual  layers .  If it i s  assumed t h a t  

t h e  r i b s  and s t r i n g e r s  are orthogonal and a r e  or ien ted  i n  the d i r ec t ion  of t h e p r i n c i p a l  

coordinates ,  a spec ia l  type of anisotropy i s  obtained, namely, o r thot ropic .  

For an or thot ropic  material the  s t r e s s - s t r a i n  r e l a t i o n s  a r e  

2 
(5 E12 + E22 82 (11-it-la-c ) 

where the s t r a i n s  a r e  defined i n  terms of displacements by equation (3-4-12). 

To determine the  stress r e s u l t a n t s  and couples f o r  a s h e l l  element i n  which 

t h e  r i b s  and s t r i n g e r s  have the same dimensions and spacing [Fig. 11-21 it i s  
~ 

, I 

necessary t o  perform the  operations 1 

. 
t 

J M2 = o2 zdz + a2 i; d z ,  N2 = r a  d z + i o 2 r ; d z  t 
S r J 2  

S 
(11-2-2a-g) 

1FlZgge, w.,  S t r e s ses  i n  Shel l s ,  Springer-Veriag, Ber l in ,  1960 

11- 3 1 
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t Z - N12 = ~ ~ ~ ( 1  + F) dz , M12 - M12 = T~~ zdz + T~~ r; zdz 
S 2 s r 

where s denotes in t eg ra t ion  through the  

t h e  r i b  o r  s t r i n g e r  with the  middle su r fa  

assumed t h a t  r i b s  and s t r i n g e r s  s t r a i n  i n  

r the  in t eg ra t ion  through 

e of the  k in  as reference.  It i s  

t h e  d i r e c t i o n  of the  appl ied  load 

and bending of the  s t i f f e n e r s  i n  the plane of the  sk in  i s  small ( i . e . , i n  plane shear 

c a r r i e d  by s k i n ) .  

a r e  

Then the  c o n s t i t u t i v e  equations f o r  a p l a t e  and cy l inder  

P l a t e  

N = E i  + E i  
X x x v y - scxx ’ 

N = E v i x + E 6  - S X  
Y Y Y  C Y  ’ 

- 
9 

N = N  = E  y 
XY Yx XY 

- 
= D X + DUXy - SCCx , Mx x x  

sk in  and 

(11-2-3a-f) 

. 

M = D v X x + D X  - S i  
Y Y Y  C Y ’  

M = M  = D  X 
XY Yx XY XY 

C y l i  nde r 

= E s + E v i e  - scxx 
NX x x  

= E s + EeCe - ScXe , Ne v x  

- - 
Et3x y N -  ex 9 

11-4 



8 .  

1 -  

. 

D 
X N = E ' y + ~  xe ex - 

xe ex 

= DxXx + D X - Seix 
MX v e  

Me = DvXx + DeXe - Seee - 

where 

E =vEh 
U 2 1-v 

- Eh 
ex - .2(1+y) E = E  

XY 

9 C = CE t($) 

M-03-63-1 

(11-2-4a-g) 

D = D  - - De - 
X Y 

XY ex 12(1-u2) 

If the s t i f f e n e r s  a r e  not or iec ted  i n  the  coordinate d i r ec t ions  new s t i f f n e s s  

c o e f f i c i e n t s  can be obtained by a r o t a t i o n  of t h e  s t i f f ene r s .  When a r o t a t i o n  of 

45" i s  performed the cons t i tu t ive  equations f o r  a p l a t e  and cyl inder  become 

P l a t e  

N = Elix + 5iy - 5 1 Sc [ Xx + X ] 
X Y 9 

N = E i + E l i y -  2 1 Sc[Xx + x y  Y 2 x  

1 S 
N XY = N Yx = [ E x y + $ $ r y ' z S c % y  , 

1 M = D X  
X l x  

(11-2- 5a-f ) 
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1 
= DIXx + D2& - 5 Sc [ ix + ] MX e *  

L M = M  = I D x  - - s  y , xe ex 2 1 2  xe 2 c 

~ where 

- - [ E x + E u  + 2 E  
El 2 XY 

XY 1 ' 
- 1 E2 - - 2 b x + E U  - 2 E  

1 1 ,  - D1 - - [ D x + D v + D  2 XY 

1 '  D2 - 5 [Dx + Du - D XY 

D12 = bx - Dul  

- 1 

II. 3 Governing D i f f e r e n t i a l  Equation 

The governing d i f f e r e n t i a l  equations f o r  an i so t rop ic  s h e l l s  i n  terms of 

w 

t i o n s  f o r  p l a t e s  and cyl inders  w i t h  r ibs i n  the  coordinate d i r e c t i o n s  and 

r o t a t e d  45" off of the coordinate d i r e c t i o n s  a r e  as follows 

u , v , 

a r e  obtained by the same procedure as s e t  f o r t h  i n  s e c t i o n  3.4. The equa- 
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. a )  P l a t e  - S t i f f e n e r s  i n  Coordinate Direct ions 

- 
- pz 

+ D w,  
YYYYY 

b) Cylinder - S t i f f e n e r s  i n  Coordinate Directions 

(11- 3-2a-c ) - - - m e  a 
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c) P l a t e  - St i f f ene r s  45” from Coordinate Direct ions 

S 
1 SC) u1 + (E2 + Exy + q v ,  2 c u’xx + (Exy + 2 c XY YY 

YY 
v, + El V J  xx (E2 + Exy + ? c XY 

(11- 3- 3a-c ) 
1 - + sc w ,  + - s w, - - p y  3 xxy 2 c YYY 

3 1 
+ 5 sc v*yyy 2 sc u’xxx 2 c xyy + 5 sc v’xxy 

3 + - s  u, 1 - 

= D  
2 .  YYYY 

+ D1 W, + [2D2 + D12 + D1 W ,  
XXXX 

d )  Cylinder - S t i f f e n e r s  45” from Coordinate Direct ions 

D (9) u ’ x x + T i  (E xe + - -  ul ee + [E2 + Exe 

D S D 
- -  Dxe v,  - R ( S  - $ ) w s x a  - w ,  ae 

q D X e  ) w ,  + - w ,  Wl = - RPx > 

xe 

4R2 ” 

E2 + -  xe D 

+ E  4 R + S c  xee 4R3 eee R x 

11-8 

(11- 3-4a-c ) 

1 - -  
000 

= - RP, , 

. 
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Residual, inherent,  locked-in o r  reac t ion  s t r e s s e s  a r e  the se l f -equi l ibra ted  

stresses wi th in  a s t ruc tu re  when the  surface and i n e r t i a  loads a r e  absent.  

These 
i 

I deformations of  a body. Although p l a s t i c  deformations may be induced by 

I stresses are  caused pr imar i ly  by the  i n i t i a t i o n  of loca l ized  p l a s t i c  

, 

various means such as welding, forming, non-uniform cooling, cold-working, 

r e s t r a i n t  of deformations and phase transformations of the mater ia l s ,  e t c . ,  

as far  as the  s t r u c t u r a l  i n t e g r i t y  i s  concerned, it i s  bel ieved t h a t  those 

i n i t i a t e d  by welding under r e s t r a i n t  a r e  the  most se r ious  ones t o  cope with.  

Appendix 111 

I11 CrENERAL ASPECTS OF RESIDUAL STRESSES IN WELDED STRUCTZJRES 

111.1 Introduction 

The s ignif icance of t he  res idua l  s t r e s s e s  i n  cold wrought metals was observed 

about ha l f  a century ago by E .  Hem. The e f f e c t  of these  locked-in s t r e s s e s  

on the  s t rength  of s t ruc tu res  and ships ,  however, was recognized only wi th in  

the l a s t  two decades because of the large-scale  b r i t t l e  f a i l u r e s  of the a l l -  

welded sh ips  and bridges experienced during the per iod of World War 11. 

s p i t e  of the f a c t  that both t h e o r e t i c a l  and experimental s tud ie s  have been 

c a r r i e d  out by various inves t iga to r s ,  f a c t s  concerning the  causes of f a i l u r e s  

of such s t ruc tu res  and t h e i r  prevention a re  s t i l l  not  thoroughly understood. 

The obvious reason f o r  t h i s  i s  mainly a t t r i b u t e d  t o  the  complexity involved 

i n  the f a i l u r e  mechanism. A s  a r e s u l t  of these inves t iga t ions ,  however, the  

e s s e n t i a l  phenomena regarding the r o l e  of r e s idua l  s t r e s s e s  are revealed t o  

a c e r t a i n  extent ,  and d i f f e r e n t  methods of eva lua t ing  such s t r e s s e s  have been 

I n  
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developed. 

b r i e f  resume of the  general  e f f e c t s  of residual stresses i n  welded s t ruc tu res .  

The purpose of the  present  work i s  t o  present  an up-to-date and 

111.2 Methods of Evaluation 

I '  

Metnod of i x e c t i g a t i n g  the magnitude and d i s t r i b u t i o n  of r e s i d u a l  stresses 

may be c l a s s i f i e d  as (A)  Analyt ical  and (B) Experimental. 

may be f u r t h e r  subc lass i f ied  as (B-1) Destructive,  (B-2) Semi-destructive and 

(B-3)  Non-destructive. 

The l a t t e r  method 

A. Analyt ical  Method. If the t i m e  h i s t o r y  of temperature d i s t r ibu -  

t i o n  wi th in  the  s t ruc tu re  due t o  welding and s t r e s s - s t r a i n  r e l a t i o n  of t he  

materials a t  v a r i m a  temperatures are  known, res idua l  s t r e s s e s  may be obtained 

from an e l a s t i c - p l a s t i c  ana lys i s ,  using t h e  flow theory of p l a s t i c i t y  and ap- 

p r o p r i a t e  yield condition. Since t h i s  i s  a nonlinear problem and t h e  numerical 

a n a l y s i s  can only be performed stepwise, choosing s m a l l - t i m e  increments f o r  the  

i n d i v i d u a l  so lu t ions ,  and r e s u l t s  are  then accumulated successively.  F i g u r e I I I . 1  

shows schematically how t h e  res idua l  stress i n  the  middle por t ion  of the center- 

welded p l a t e  i s  generated. It should be noted that t h i s  mathematical ana lys i s  

i s  r a t h e r  complicated and it i s  not exact  because accurate information of the 

temperature d i s t r i b u t i o n  and i t s  var ia t ion  with t i m e  i s  very d i f f i c u l t  t o  obtain,  

e s p e c i a l l y  f o r  multi-pass welding processes. 
/ 

B. Experimental Methods 

B. 1 Destructive Methods 

B.l.l Method of Sectioning. This method i s  appl ied t o  welded s t ruc tu res  

composed of t h i n  p l a t e  elements i n  which the  locked-in s t r e s s e s  are e s s e n t i a l l y  

uniform through the  thickness.  The basic  assumption used i s  t h a t  the  res idua l  
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process ,  ( b )  c a l i b r a t i n g  the  gages, ( e )  sec t ion ing  of the  p l a t e s ,  ( d )  reading 

s t r e s s e s  a r e  e l a s t i c .  

measured by means of s u i t a b l e  gages and then the  s t r e s s e s  a r e  computed from 

I f  the  p l a t e s  a r e  C U t J  t h e  r e l i eved  s t r a i n s  can be 

I the  re laxed s t r a i n s  and ( e )  computing the s t r e s s e s  from the  e l a s t i c  l a w .  

c 

, 
l aye r  i s  trepanned o r  bored. Consequently, s t r e s s e s  a t  d i f f e r e n t  l oca t ions  

t h e  l i nea r  s t r e s s - s t r a i n  r e l a t i o n s .  

i n s t a l l i n g  the  s t r a i n  gages on the  sur face  of the  p l a t e s  a f t e r  t h e  welding 

The t echn ica l  procedure involves  (a)  

both surface and i n t e r n a l  r e s idua l  s t r e s s e s  of t h i c k  p l a t e s  and tubes.  The 

p r i n c i p l e  involved i s  e s s e n t i a l l y  the  same as t h a t  of sec t ion ing  except t h a t  

the  technique i s  re f ined  such tha t  the  c u t t i n g  through the  thickness  i s  per-  

formed i n  a sequent ia l  manner and intermediate  s t r a i n s  a r e  recorded a f t e r  each 

across  the  thickness  a r e  evaluated.  

B.2 Semi-Destructive Method 

B.2.1 Method of the  Hole. This method involves  the  app l i ca t ion  of 

the known s t r e s s - s t r a i n  r e l a t i o n s  f o r  t h i n  p l a t e s  with and without a hole.  

The r e s idua l  s t r e s s e s  a r e  obtained through the  d i f f e r e n t i a l  s t r a i n s  measured 

experimentally before and a f t e r  a hole i s  c u t .  Since the  s i z e  of hole t o  be 

cu t  i s  small (about 1/2" diameter) ,  the  evaluated s t r e s s e s  a r e  q u i t e  accura te .  

It should be remarked t h a t  s t r a i n  r o s e t t e s  were exc lus ive ly  placed outs ide  of 

t he  hole i n  the  previous works. It i s  expected t h a t  b e t t e r  r e s u l t s ,  perhaps, 

may be obtained f o r  the  f u t u r e  s tud ie s  i f  they a r e  cemented wi th in  the  hole 

s ince  improved smaller s t r a i n  gages have been developed l a t e l y .  

B. 3 Non-Destructive Methods 

B . 3 . l  Photoe las t ic  Method. This method has been used t o  study the  
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quan t i t a t ive  r e s idua l  stress d i s t r i b u t i o n  i n  welded p l a t e s  by simulat ing a 

weld i n  t h e  t ransparent  materials such as t h e  photoe las t ic  b a k e l i t e .  

p a t t e r n  of t he  frozen o r  r e s idua l  s t r e s s e s  can be observed through t h e  po la r i -  

scope us ing  polar ized  l i g h t .  

from t h e  st ress-oDtic  l a w .  

The 

The f r inge  values  are then  converted in to  stresses 

B.3.2 X-Ray Dif f rac t ion  Method. The r e s idua l  stresses i n  the  regions 

It involves t h e  de te r -  away from the  weld can be evaluated by this technique. 

mination of t he  locked-in s t r a i n s  which a r e  assumed t o  be proport ional  t o  t h e  

changes i n  t h e  interactomic dis tances  between planes of  atoms. 

done by measuring the  Bragg angle from 2-exposure x-ray d i f f r a c t i o n s ,  and t h e  

co r re spordhg  stresses are expressible  i n  terms of the material p rope r t i e s  

and change of Bragg angle.  

This can be 

It i s  be l ieved  that this i s  the  only method t o  obta in  the  quan t i t a t ive  r e s idua l  

s t r e s s e s  nondestruct ively.  This  method a l s o  provides a b e t t e r  way of measuring 

s t eep  gradien ts  because it can determine s t r a i n s  within a very small area. The 

disadvantages of t h i s  method are: 

f aces  can be ObSerVed, ( b )  the  grain s i z e  of t he  material must be ne i the r  too  

l a rge  nor too small, and ( e )  the  stresses i n  the  weld are d i f f i c u l t  t o  determine. 

(a )  only the  surface s t r e s s e s  on smooth sur- 

111.3 S t r e s s  o r  S t r a i n  Pa t t e rns  

Some s t r e s s  o r  s t r a i n  pa t t e rns  of some simple (as-del ivered,  as-welded and 

hea t - t r ea t ed )  s t r u c t u r e s  a r e  shown below. 

des t ruc t ive  methods. 

The s t r a i n s  a r e  determined by the  
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111.3.1 S t r e s s  D i s t r ibu t ion  i n  P la t e s  

I I  Fig. 111-2 shows the  typ ica l  longi tudina l  stress p a t t e r n  of some as-de l ivered  

and var ious center-welded p l a t e s .  Fig. 111-3 shows t h e  corresponding stress 

d i s t r i b u t i o n  of the  edge-welded p l a t e s .  

A 7  S t r u c t u r a l  S t e e l ,  welded manually. 

These p l a t e s  are of ASFM Designation 

111.3.2 S t r a i n  and S t r e s s  Dis t r ibu t ions  of F and Box Members 

Fig. 111-4 shows t he  s t r a i n  d i s t r ibu t ions  f o r  both as-del ivered and stress- 

relief annealed cases  of a non-welded S.F beam. Fig.  111-5 shows t h e  general  

stress d i s t r i b u t i o n s  of welded H and box sec t ions .  A l l  base materials are of 

A 7  Stee l .  The j o i n t s  were machine weided zshg  automatic submerged-arc. 

111.3.3 Variat ions of S t r e s s e s  in Welded Pipe 

Fig.  111-6 shows t h e  s t r e s s  va r i a t ions  due t o  c i rcumferent ia l  single-V b u t t  

welds in 5-l/2 inch  mi ld-s tee l  pipe, 1/2-inch th ick ,  w i t h  d i f f e r e n t  welding 

procedures. 

111.4 Discussion and Recommendations 

I n  view of the  stress p a t t e r n s  a s  shown i n  t h e  foregoing sec t ion  and the  

assoc ia ted  r e s u l t s  given by various inves t iga to r s  ( see  references l i s ted  a t  

the  end of t h i s  appendix), the  following general  conclusion can be drawn: 

a )  Residual stresses are  usua l ly  present  i n  the  unwelded wrought 

product . 

b )  Residual stresses in welded s t r u c t u r e s  vary wi th  the s t r u c t u r a l  
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It shou 

configuration, t h e  weld design, the welding process,  pre- and 

post-weld h i s to ry ,  t he  stress r e l axa t ion  c h a r a c t e r i s t i c s  of base 

metal, weld assemblage procedures, e t c .  

Residual peak stresses i n  weldments which a r e  not  stress r e l i e v e d  

are governed by the  stress r e l axa t ion  c h a r a c t e r i s t i c s  o f  the  base 

metal. An annealing treatment would remove r e s i d u a l  welding 

s t r e s s e s  completely, however, any measured r e s idua l  s t r e s s  a f t e r  

annealing would be the  r e s u l t  of d i f f e r e n t i a l  cool ing from annealing 

temperatures. 

num a l loys  would a l s o  reduce r e s idua l  s t r e s s e s .  

A r t i f i c i a l  aging a f t e r  welding as appl ied i n  alumi- 

Bending s t r eng th  i s  reduced when an  ex te rna l  l oad  i s  superimposed 

on a r e s idua l  t ens ion  stress f i e l d .  Residual stresses may inf luence 

t h e  buckling c h a r a c t e r i s t i c s  of a column, however, a weldment i s  a 

metal lurgical  d i scon t inu i ty  and i t s  mere presence could con t r ibu te  

t o  lowering buckling s t r eng ths  s i g n i f i c a n t l y ,  e s p e c i a l l y  i n  columns 

of low o r  medium slenderness r a t i o s .  

. 

The magnitude of t ransverse s t r e s s e s  perpendicular t o  t h e  weld i n  

p l a t e  s t ruc tu res  i s  u s u a l l y  small as compared t o  those along the  

weld. However, the  p a t t e r n  of t r ansve r se  s t r e s s  d i s t r i b u t i o n  has 

not given as much a t t e n t i o n  as t h a t  f o r  l o n g i t u d i n a l  s t r e s s e s .  

be noted t h a t  previous s t u d i e s  on r e s i d u a l  s t r e s s e s  were l i m i t e d  i n  

simple s t e e l  s t ruc tu res ,  and very l i t t l e  work can be found on welded s t r u c t u r e s  

made of aluminum a l loys  and shapes involving a change i n  thickness  w i t h  var ious 
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end r e s t r a i n t s ,  us ing  d i f f e r e n t  types of welding procedures. 

that new stress p a t t e r n s  may be found, e s p e c i a l l y  i n  the  v i c i n i t y  of welds 

wi th  r e s t r a i n t s  such as jo in ing  a Y-extrusion with tapered p l a t e s  and r ibbed 

s h e l l  elements i n  m u l t i c e l l u l a r  pressure ves se l s .  Furthermore, when such all-  

welded l a r g e  s t r u c t u r e s  are not  stress re l ieved ,  it i s  expected the  two-dimen- 

s i o n a l  r e s idua l  stresses a r e  very high, and t h e  longi i t id l rz l  stresses within 

the  weld may eventua l ly  reach t h e  y i e ld  l i m i t .  

e f f i c i e n c y  by means of t he  ordinary uni -ax ia l  standard coupon t e s t i n g  procedure, 

unreasonable r e s u l t s  may be produced due pr imar i ly  t o  neglec t ing  of the  simlta- 

neous a c t i o n  of the  longi tudina l  s t r e s s e s ,  unless  l a rge  specimens are t e s t e d  

b i - a x i a l l y .  The procedure of t h e  l a t t e r  method of t e s t i n g  i s  r a t h e r  involved 

and d i f f i c u l t  t o  perform, however. 

It is  expected 

If one wants t o  f i n d  the  j o i n t  

Residual stresses a r e  a spec ia l  kind of p re - s t r e s s ,  and they can be incorporated 

i n t o  the  t h e o r e t i c a l  ana lys i s  by simple superposi t ion o r  by e s t ab l i sh ing  a 

reasonable j o i n t  e f f i c i e n c y  of weld. Both methods requi re  that the magnitude 

and d i s t r i b u t i o n  of s t r e s s e s  a r e  known. The j o i n t  e f f i c i e n c y  i s  es tab l i shed  

through a well-known y i e l d  c r i t e r i o n  of f a i l u r e  us ing  energy approach and uni- 

a x i a l  tes t  r e s u l t s .  Unfortunately, the  ana ly t i ca l  method of eva lua t ing  the  

r e s i d u a l  s t r e s s e s ,  as mentioned before,  i s  very d i f f i c u l t  and experimental 

methods a r e  l e s s  complicated. Consequently, it i s  recommended t h a t  some experi-  

mental work on the  accurate  determination of t he  r e s idua l  s t r e s s e s  should be 

c a r r i e d  o u t .  

poss ib le  means of s t r e s s - r e l i e f  of residlual s t r e s s e s .  

Inves t iga t ions  should a l so  be conducted on the  e f f e c t s  of var ious 

L 
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Appendix I V  

I V .  A DIRECT METHOD OF SOLVING LARGE MATRICES OF 
FINITE-DIFFERENCE EQUATIONS 

I V . l  In t roduct ion 

The generation of a s e t  of simultaneous f i n i t e  difference equations t o  replace 

the  o r i g i n a l  governing d i f f e r e n t i a l  equations has been discussed i n  sec t ion  6.2. 

This appendix contains a desc r ip t ion  of a method used t o  solve the  f i n i t e -  

difference system and a discussion of a d i g i t a l  computer program f o r  a c y l i n d r i -  

c a l  s h e l l  segment. The same general  method i s  appl icable  with s l i g h t  modifi- 

ca t ions  t o  o the r  geometries. 

A t y p i c a l  rectangular mesh f o r  a cyl inder  whose boundaries coincide with mesh 

l i n e s  i s  shown i n  Fig. I V - 1 .  Since the re  a r e  th ree  unknowns a t  each mesh po in t ,  

eOUNOA,RU LINL 

Fig .  I V - 1  Mesh Po in t  Numbering f o r  Cy l ind r i ca l  S h e l l  Segment 

I V -  1 
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even such a small mesh [Fig. rV-13 leads t o  a system of 60 simultaneous equa- 

t i o n s  while a 30 by 30 mesh generates 2700 equations.  A d i g i t a l  computer pro- 

gram t o  form t h e  f i n i t e  difference equations corresponding t o  a rectangular  mesh 

of these dimensions presents  no unusual d i f f i c u l t i e s .  The f irst  requirement i s  

t o  determine the ordering of the  equations and t h e  unknowns i n  the  simultaneous 

equation system. 

poin t  (i , j ) are w r i t t e n  i n  terms of the  neighboring points (i i 1 j ) : 

(i - 1 , j )  , (i , j + 1) , e t c .  Thus the  c o e f f i c i e n t s  f o r  an equation a t  a 

p a r t i c u l a r  p o i n t  

of i and j i n  these general formulas. Special  tests must be made t o  a l te r  

the r e s u l t s  of t h i s  s u b s t i t u t i o n  f o r  po in ts  near t he  boundary o r  symmetry l i n e s .  

F in i te -d i f fe rence  equations [Eq. (6-2-6)] f o r  a general  i n t e r i o r  

(i , j )  a re  obtained simply by s u b s t i t u t i n g  the  numerical values 

The general  1aethc12~ svz i l ab le  f o r  the so lu t ion  of the r e s u l t i n g  l i n e a r  system 

AX = B (e.g.  Gauss elimination, e t c . )  a r e  not p r a c t i c a l  f o r  such a la rge  number 

I of equations due t o  excessive storage and  time requirements. I t e r a t i v e  methods 

have been used successful ly  i n  solving l a rge  systems derived from f i n i t e  differ- 

ence approximations. When such techniques a r e  applicable,  they f requent ly  provide 

the  most r a p i d  and accurate  method of so lu t ion .  Examination of the equation 

system AX = B shows that the conditions insur ing  convergence of the  poin t  i t e r a -  

t i v e  methods a r e  n o t  s a t i s f i e d .  Several methods have been proposed t o  modify 

the  matrix equation so that these conditions w i l l  be s a t i s f i e d  [see Bodewig2 and 

Faddeeva 1. However, the  r e su l t i ng  increased cos t  i n  s torage and running t i m e  

p e r  i t e r a t i o n  makes such a procedure impract ical  i n  the  present  s i t ua t ion .  

3 

More 

recent ly ,  the use of "block" i t e r a t i v e  techniques has been inves t iga ted  by sev- 

e r a l  authors.  Unfortunately, the t h e o r e t i c a l  basis f o r  such techniques has so 

'Varga, R. , Matrix I t e r a t i v e  Analysis, Prentice-Hall ,  New York, 1962 
%odewig, F. , Matrix Calculus, North-Holland Publishing Company, Amsterdam, 1959 
baddeeva,  V. N . ,  Computational Methods of Linear Algebra, Dover, New York, 1959 
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fa r  only been provided f o r  spec ia l i zed  problems. 

p re sen t  problem ind ica t e  t h a t  Gauss-Seidel 2- l ine i t e r a t i o n  converges b u t  only 

very slowly. 

t he  var ious overrelaxat ion schemes described by Varga must be developed before 

i t e r a t i o n  w i l l  become p r a c t i c a l .  Consequently, while it i s  f e l t  that i t e r a t i v e  

methods should be inves t iga t ed  and may u l t imate ly  provide the  b e s t  method, i n i t i a l  

e f f o r t s  have been concentrated on developing a f e a s i b l e  d i r e c t  so lu t ion .  A d i r e c t  

method a l s o  appears a t t r a c t i v e  when so lu t ions  are des i r ed  f o r  the  same matrix 

with many d i f f e r e n t  r i g h t  hand vectors  B . 

Preliminary t r ia l s  t o  the  

Thus some method t o  acce le ra t e  convergence along the  l i n e s  of 

1 

A 

IV.2 A d i r e c t  method f o r  the  so lu t ion  of AX = B 

The method developed t o  solve t h e  simultaneous equation system i s  r e l a t e d  t o  

t I  

t 

Choleski decomposition. 

matr ix  can be f ac to red  i n t o  the  product of an upper- t r iangular  and a lower - t r i -  

By the  Choleski' decomposition algorithm, any non-singular 
\ 

angular matrix.  The so lu t ion  vec to r  X can then be r e a d i l y  obtained from the  

f ac to red  form of the matrix.  However, s torage requirements and the  computational 

e f f o r t  required preclude the  use of t h i s  algorithm f o r  l a r g e  systems. 

f a c t o r i z a t i o n  of the matrix A 

Ins tead ,  a 

i n t o  the  product of an upper- t r iangular  and a 

lower- t r iangular  matrix i s  accomplished by f i r s t  p a r t i t i o n i n g  

v i s i n g  a recursion algorithm appl icable  t o  t h e  submatrices of 

i t s  elements. 

A 

A r a t h e r  than t o  

and then de- 

The f e a s i b i l i t y  of  t h i s  method i s  d i r e c t l y  dependent on the  form of the  matrix 

A which i n  t u r n  i s  dependent on the  order ing of t h e  equat ions and unknowns. One 

n a t u r a l  method f o r  obtaining a s u i t a b l e  p a r t i t i o n i n g  i s  the  following one. The 

th ree  f i n i t e  difference equations f o r  the  f i r s t  mesh p o i n t  on t h e  f i r s t  row (1 , 

1) become the  f i r s t  th ree  equations of A . The fol lowing equations a r e  taken 

from the  remaining points  on the  f i r s t  row. The unknowns a r e  ordered I n  the  same 

manner. Then t h e  equations f o r  t he  f i r s t  p o i n t  on the  second row a r e  w r i t t e n ,  
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and so on. The matrix A i s  accordingly p a r t i t i o n e d  i n  the manner shown below, 

J1 

H2 

3 C 

0 

0 
L 

where m i s  the  number of rows i n  the f i n i t e  difference mesh. 

A =  

l v  

0 .  F1 G1 

D2 E2 F2 G2 

c3 D3 E3 F3 G3 

O c4 9c E4 F4 G4 * 

0 .  

0 .  

0 0 

0 

E ‘m Dm m 

f o r  e x a q l e ,  contains c o e f f i c i e n t s  of unknowns from the  1 ’  The submatrix F 

second row of the  mesh which appear i n  equations f o r  po in ts  on the  f i r s t  row 

of t h e  mesh. The most s ign i f i can t  f ea tu re  of A i s  t h a t  a l l  of the non-zero 

submatrices of A are contained i n  f i v e  diagonals. T h i s  i s  caused by the  

f a c t  that f o r  t h e  present  problem, the f i n i t e  difference equations f o r  a given 

mesh row involve unknowns from mesh rows a t  most two rows above o r  below. The 

matr ix  A can now be fac tored  i n t o  the product of a lower-triangular matrix L 

and an upper t r i a n g u l a r  matrix U both of which a r e  p a r t i t i o n e d  

manner as A . 
A = LU 

L 

0 

J2 

c4 

3 H 

0 .  

J O  3 

H4 J4 

0 

0 

‘m Hm Ji 

L J =  

0 .  M1 *1 

1 M2 N2 0 

0 

0 

i n  the same 

0 

:.J m-: 
I M .  m-. 

0 1  
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The lowest diagonal of L i s  the  same as the  corresponding diagonal of A 

and the  main diagonal of U c o n s i s t s  of i d e n t i t y  submatrices. The remaining 

submatrices of L and U a r e  obtaized from the  following recursion scheme: 

t 

- - Di - CiMi-2 
Hi 1. i = 2 , m  

i = l J m  - 2. Ji - Ei - HiMi-L - CiNi-* 

1 i = 1 m - 1  - -1 3 .  Mi - Ji (Fi - HiNiml 

-1 4. Ni = Ji Gi i = 1 , m-2 

For each f i x e d  i , t h e  submatrices of L and U are formed i n  t h e  l i s t e d  

order  (when the  subscr ipt  of a term i s  less  than 

ze ro ) .  The proof that A = LU i s  obtained d i r e c t l y  by mul t ip l i ca t ion .  Of 

course, i t  i s  necessary t h a t  the submatrices J i  a l l  be non-singular. When 

t h e  f a c t o r i z a t i o n  has been completed, the  a u x i l i a r y  matrix equation LZ = 3 i s  

solved by the  following recursion:  

1 the  corresponding term i s  

F ina l ly ,  the  equation UX = Z i s  solved by another recursion:  

= Z  - M  X X i = 0 m - 1  'm- i m - i  m - i  m - 1 - i  - N m - i  m-2-i 

(when a subscr ipt  i s  g r e a t e r  than m t h a t  term i s  zero)  

IV. 3 A d i g i t a l  computer program f o r  a c y l i n d r i c a l  s h e l l  segment 

A d i g i t a l  computer program has been wr i t t en  f o r  t h e  IBM 7094 using the  

FORTRAN 11, version I1 language,which solves f o r  t h e  displacements of a 
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cy l ind r i ca l  s h e l l  segment with i t s  edges clamped. Assuming a f i n i t e  differ- 

ence mesh with an equal number of rows and columns, a system of approximately 

3000 equations can be solved. The program i s  organized i n t o  a main program, 

which cont ro ls  the sequence of s teps  i n  the var ious recursion schemes, and a 
0 

c o l l e c t i o n  of subroutines c a l l e d  by the main program i n  which data i s  generated 

- --- --nmm; nn or matrix operat ions a r e  performed, e t c .  The chief  d i f f i c u l t y  iu plug .I. Cu-- 

t he  method described above i s  the problem of minimizing memory s torage require-  

ments while a t  the  same t i m e  keeping the t o t a l  computation t i m e  within reason- 

ab le  bounds. A 30 by 30 f i n i t e  difference mesh generates submatrices con- 

s i s t i n g  of 8100 elements. There i s  therefore  room f o r  a t  most t h ree  such 

submatrices i n  core s torage a t  a given t i m e .  Consequently, a subs t an t i a l  

amount of intermediate tape storage i s  unavoidable. By s e l e c t i n g  tne sequence 

of operations c a r e f u l l y  and overlapping tape a c t i v i t y  with i n t e r n a l  computation, 

t he  delays caused by tape reading o r  w r i t i n g  have been reduced t o  a s m a l l  

f r a c t i o n  of the t o t a l  time. 

of rows and columns may be var ied  independently. The only l i m i t a t i o n  on the 

s i z e  of the mesh i s  the  number of COlUIIXISa which must no t  exceed 32. L e t  m 

be the number of rows and n the  number of columns i n  the f i n i t e  difference 

mesh. 

The program has been designed so t h a t  the number 

A n  approximate formula f o r  the  time required on the  7094 i s :  

3 t = m * n / ~ O , O O O  minutes . 

It should be noted t h a t  the execution time i s  d i r e c t l y  proport ional  t o  the  

number of rows. 

it would be des i rab le  t o  rewri te  por t ions  of the program t o  interchange the 

r o l e  of the rows and columns. No e s s e n t i a l  a l t e r a t i o n  of the  method would 

be necessary t o  accomplish this. 

If a mesh w i t h  many more columns than rows should be required,  
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The accuracy of the computations has been improved by u t i l i z i n g  the double 

p r e c i s i o n  fea tures  ava i lab le  on the 7094 f o r  the  most c r i t i c a l  operations 

of matrix mul t ip l ica t ion  and matrix inversion.  

I 

L 

Figure I V -  2 and Fig. I V -  3 present  the r e s u l t s  of the computer program for 

displacements along the two l i n e s  of symmetry for varying mesh spacing. 

The loading i s  due t o  a uniform pressure normal t o  the s h e l l  surface.  
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